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Probabilistic Approaches for SLAM

Why we use Probability?
1
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Why SLAM is Problematic?
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Where am I?

Hidden Area

If I see a map,
I Know position.

We cannot see an entire map.
Without exploration,
We cannot get a map

• Localization                    vs.               Mapping

Where?
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Why SLAM is Problematic?

Localization and Mapping occur 

coincidentally

• Localization requires Map

• Mapping requires position information

– A mobile robot wants Localization and mapping at the same time

4

Localization Mapping



T&C LAB-AI

Dept. of Intelligent Robot Eng. MU

Robotics

A robot must do What we did 
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I know this road,
MAYBE…

Hidden Area

I am on (10,3),

MAYBE…TT

How to mix
Two Unsure
Information?
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Everything in Probabilistic Robotics

is NOT Sure(or Deterministic)
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Pr=1

Pr=1Pr=0.5
Pr=0.7

Pr=0.8
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SLAM Example

• SLAM: State is NOT directly observed

– (1) Every states are considered as Probabilistic Distribution.
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Position is NOT a vector
Position is also a distribution
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SLAM uses Mapping,
which maps Partial information onto Final Results (2)

8
Wall is Not Deterministic, but a Probability
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SLAM with 

Kalmann Filter or Particle Filter

• SLAM: Simultaneous Localization And Mapping

• Assumption:

– Sensor information is Poor( inaccurate  but Probabilistic)

• Probabilistic Approach

– We are familiar with accurate variable ( x=3, y=2)

– But in an actual world, x is not 3 in general.
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Why Probabilistic Approach?

• Mapping (or Registration)

– Each scene is Not Perfect.  Probabilistic distribution

– Imperfect scene is Probabilistically merged

– Repetitive Sampling improves accuracy

– Sequential (Continuous) Observation(Scan) is NOT the sum 

of each one.

– Sampling(Not all data) saves Computational burdens.

• Precondition:

– Assume that Everything is Probabilistic.
10
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Analogy: 

Sample (or Particle) is Probability
2
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Non Parametric Method

• Bayesian Classifier

– Random data X has Probabilistic Distribution

– Parametric estimation

• Non Parametric Method

– No explicit distribution like Gaussian

– Parameters: ex) Mean, sigma

– Remind that Gaussian distribution requires ASSUMPTION.

– Sample data generates some estimation function (Inferential 

type)

– Non parametric method has amount of parameters like 

Neural network.
12
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kth Nearest Neighbor

• Developed in 1960.

• Easy to understand it (Even very simple)

• Example( Tall and ~Tall)

13

X= height

~Tall

Tall
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In case of Bayesian Classifier

• Find Gaussian distribution from sample data

14

X= height

~Tall Tall2
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Nearest Neighbor

• Find the nearest sample to a given X

• If the nearest one is in a class w1, then x is w1.

• If the nearest one is in a class w2, then x is w2.

• Very simple.. 15

X= height

X

Nearest one Tall!

X

Nearest one~Tall
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Kth Nearest Neighbor

• “Kth” means that find the nearest neighbors with k 

number.

• More number class is the result

16

X= height
Ex) 3th Nearest neighbor

Tall cases(2) and ~Tall case (1)
2 > 1 .
therefore, it is tall.

X
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Hand Writing Recognition

• Example: test1

• See result.

• Oops. 

• Recognition is so easy 

like this?

– Generally, No.

• Why it is so good?

17

Example 5x5 writing

Instance = 25 dimension vector

X=[ 0,1,1,0,0, 1,1,0,1,0, 
1,0,0,1,1,  1,1,1,1,1,  1,0,0,0,1]

S si

Distance= |x1-S1|+|x2-
s2|+…|x25-s25|
Find the minimum distance.
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Features of KNN

• Even Image is possible

– Ex) Instance x is 640x480 dimension.

• Most learning method do learning after sampling.

• When kNN is learned?

– When Sample is added, there is NO learning.

• However, kNN does not do learning procedure.

• Learning occurs, when we find nearest neighbors.

–  Lazy learning. 

• Problem

– With more sample, comparison is painful process. 18
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Why kNN rather than 1-NN ?

• 1-NN finds the nearest neighbor.

– Very specific solution ( Over fitting)

• K-NN finds the k nearest neighbors.

– Less specific solution  Not Sensitive to Noisy sample.

19

X

X

X

Result: triangle

Result: circle

1-NN : triangle
K-NN : circle
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Distance of KNN

• When x is an instance vector,

• Generally, 2 norm is used for distance measurement

– 1-Norm: absolute value , |x| 

– 2-Norm: vector distance 

• Distance of NN

– S={s1, s2, s3,…sN}

– If the current X is added, S={ s1, s2, s3,…sN, sN+1}   where 

sN+1  X.

Distance = 

20

2 2 2|| X || x y z  
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Discrete Problems for KNN

• Continuous data

• X=(0.01, 0.1, 0.4)

• Si=(1.2, 0.4, 0.2)

• Distance = 1.2434

21

• Hand writing example

• X=(0,1,0,1,0,0)

• Si=(1,0,0,0,0,0)

• Sj=(0,1,0,0,1,1)

• Distance

• ||X-Si|| = sqrt(3)

• ||X-Sj|| = sqrt(3)

• Discrimination is not so 

accurate!
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Clustering Method

Important Tools for Intelligent Robotics

• Pattern recognition requires Class definition

• How many classes here?

• There are only two lumps  Two clusters.
22

2 classes
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Clustering Method find 

how many clusters are there

• Many clustering methods.

• Example) K Means Clustering Method.

• 1. Assume there are K clusters.

• 2. Guess each centroid of cluster.

• 3. Find k points to closest centroid

• 4. Recompute the centroid of each cluster.

23

Centroid

Ex) 3 means clustering
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Example) K means Clustering

• Test 2.m

24
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Example) K means Clustering

Centroid comes close to mean value

25
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C1=(1.1796, 0.9455) C2=(8.2737, 1.2528)
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Centroid of Cluster

What is it?

• In k means cluster, 

– centroid approaches mean value of the test distribution.

– But it is not on mean value.

– Why?

• Think the role of K mean cluster.

– K closest points are Not whole data. Just Sample.

 In each turn, K mean clustering method find the centroid 

of K closest points.

– If Initial centroid is biased, centroid is sometimes biased.

• If we guess wrong number of centroid, how it works? 

26
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Why we need Observer?

Probabilistic Approach

toward Kalman Filter

3

27
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You Measure Everything?

• Your graduation is on Prof. Y’s decision

28

Graduation
Is OK?

…
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It is a Black box

29

When X>?,
Graduation

is OK.

Graduation!!Fail, T_T…

We cannot read his mind.

But we can estimate “X>?”
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So, We guess X from Observation Z

30

Your Estimation 
Your Measurement
Your Guess

Z: observation X: Actual State

His standard
His mind
His viewpoint

We don’t know XWe only know Z



T&C LAB-AI

Dept. of Intelligent Robot Eng. MU

Robotics

Can you Read his Mind?

31

I think

Z= 0.9
Excellent

Z= 0.6
Not bad

Z= 0.8
good

Fail

Fail

Graduation

Pr(X|Z) is about 
1/3 
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How we Improve P(x|z) ?

The best way is Repetitive Confirmation

32

My 
guess,
Z=0.5

My 
guess,
Z=0.3

My 
guess,
Z=0.9

My 
guess,
Z=0.6

My 
guess,
Z=0.9

My 
guess,
Z=0.7

X=0.1

X=graduation

Pr(X|Z) is improved

X=0.7X=0.4X=0 X=0.6
X=0.8
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You Focused on 

Why P(X|Z) is improved?

33

X
0 0.1 0.3 0.4 0.7 0.8

Z=0.5: X=0.1

Z=0.9: X=0.5

0.6

P(Z|X)

Z=0.7: X=0.8

We Do Not know X but, P(X|Z) becomes 
increase to 1
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Basics of Control 

for Kalman Filter4

34
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Kalman filter

• Kalman Filter(KF)

– Estimates current state with observed state.

– Estimation error is minimized by using Gaussian concept

– Prediction + Update process.

• For SLAM, why KF is used?

35
X=0

q1 q2

X~N(10,3)

q3

X~N(11,10)

KF minimizes 
estimation 
error variance
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0 100 200 300 400 500

-0.5

0

0.5

1

1.5

2

2.5

KF model
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Test3.m

Noisy data(blue) is filtered out as Green data
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Pre Knowledge for KF.

• State space expression

• 2nd order mass-spring-damper system.

• Second order differential equation has two solutions

37

( )mx cx kx F t  

0h h hmx cx kx   Homogeneous Solution

( )p p pmx cx kx F t   Particular solution
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Easier than 1st order,

• D operator for simplifying 2nd order Differential Eq.

38
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Mass-Spring System 

40
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Particular Solution of 2nd order Diff. Eq.
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Particular Solution is 

the Controller

• U : controller

• U=0  Homogenous solution  System dynamics

• If we define                     , every dynamics is 

expressed as state variable x.

•  State space 

42

( ) u(t)my cy ky F t   
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State Space Notation
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State Space Notation with Control Input
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Laplace Transform and Eigenvalue of A
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State Space Model

• Exactly, Linear Model is expressed as,

• Non linear system dynamics

• Generally, Non Linear system dynamics

46

x Ax Bu  Eig(A) are root(Poles).

( )x f x u 

( , )x f x u
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Feedback Observation

• Assume that state variable x can be observed.

• But it is sometimes impossible or corrupted with noise

47

x Ax Bu 

y Cx Du 
Special case

1, 0C D

y x

 


Robot

q:joint angle x

s:encoder y

1C
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2nd order Mass-Spring-Damper

• Example) exms.m
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Our Model is Perfect?

No, it has uncertainties and Model is Imperfect
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Process Noise

50
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Measurement Noise
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Process and Measurement Noises

are UNAVOIDABLE Problems
• In spite of all, why we did not add noise model?

– We neglect noises in many cases

– Noise model is somewhat complex and unpredictable

– Also, you are undergraduate student..

• Intuitive Example

– Encoder signal is an actual value?

– Encoder is perfect but Joint angle is NOT perfect

– Assumption of that encoder is same with joint angle.

52
Encoder is perfect

Marker signal is not true. 
Why? It is attached on deformable skins
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Kalman Filter5

53
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Expectation in Probability

• E{x}: Expectation, What a value occurs with Prob.

• Remind Probabilistic density function

– Ex) Gaussian

• Expectation of “1” of Dice throwing

• Expectation converges into Mean value.
54
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Goal of Kalman Filter
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Kalman Filter

56
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Kalman Filter Definitions
state vector x cannot be directly measured
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Derivation of K.F.
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1k k k k

k k k k

x F x w

z H x v

  

 
Simply, we think time 
invariant system

1k k

k k

x Fx w

z Hx v

  

 

Before update
(Prediction)

After Update

:  

ˆ :  

ˆ :  

x actual value

x estimated value

Our Goal x x

A’ A| 1k kA 
|k kA

 Unknowns

 Estimation from Model
But, How we update it?
Update    with     x̂ y
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1. Estimation of X

• We want to  know an actual value, X 

• X is not measured directly

• Thus,  instead of X, we use estimation, 

• But, remind that there is Process Error 60

X AX BU 

1 1k k kX AX BU  

Continuous form

Discrete form

 

1
1

1 1

1 1 1

1

k k
k k

k k k

k k k k

X X
X AX BU

t

X tA X tBU

A X B U




 

  


  



   

 

X̂
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1. Estimation of X with        and  covariance, P

• Perfect Model

• Process error

• Actual value X is divided into two factor 
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X̂

X̂

1 1k k kX AX BU  

1 1 1k k k kX AX BU w    

X

P
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• Estimation      changes under system dynamics
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2. Prediction of       by system model X̂

X̂

1 1 1k k k kX AX BU w    

Actual value, X

1 1
ˆ ˆ ??k k kX AX BU  

kX 1kX 

kw kw

ˆ
kX 1

ˆ
kX 

1 1 1k k k kX AX BU w     1 1
ˆ ˆ

k k kX AX BU  

P=?
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• Estimation     is given, but         is Not clear.

• Thus, we use a new concept, Prediction.

– Prediction is temporarily used by system dynamics

– Prediction will be updated by measurement
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2. Prediction of       by system model X̂

ˆ
kX

1
ˆ

kX 

X̂ ˆ 'XEstimation Prediction

kw

ˆ
kX 1

ˆ 'kX 

1
ˆ ˆ'k k kX AX BU  

'PP
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3. Prediction of Covariance, P
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' ?P  ˆ' 'e x x 

1 1

2

1 1

2

2

2 2 2 2

2

' { ' '}

ˆ{( ' ) }

ˆ{( ' ) }

ˆ{( ) }

{( ) } { } { }

0

k k

k k

P E e e

E x x

E x Fx w

E Fx Fx w

E Fe w F E e E w

F P Q

 

 



 

  

  

   

  

2{ }E w Q

• Definition of Covariance, P

• Prediction of Covariance, P’ 

2{ },P E e ˆe x x  P means how much estimation is biased 
from an actual value
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4. Definition of Kalman Gain

Measurement Updates Estimation 
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1k k

k k

x Fx w

z Hx v

  

 

Actual System
But we don’t know it 

1

1 1

1 1 1 1

Prediction

ˆ ˆ'

ˆˆ ' '

:

ˆ ˆˆ '  - '

k k

k k

k k k k

x Fx

z Hx

Update

z z K gain x x



 

   





  

Estimation ˆx x

w, v cannot be 
directly measured,

But, F and H can be 
modeled.

Measurement, z Estimation is 
updated

ˆ ˆ ˆ- ' ( ')x x K z z 
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State Estimation x̂
Estimation Error ˆe x x 

1k k

k k

x Fx w

z Hx v

  

 

w, v : Noise

Every values have Prob. distribution

Covariance P
2{ } { }TP E ee E e 

1 1 1 2 1 1

1 2 2 2 2 2

0 0

0 0

e e e e e e
E E

e e e e e e

         
               

Objective
Prob. Error 
Becomes zero.
Minimization

Kalman Gain definition, K (Brilliant idea)

Prediction We know only F, but don’t know w and v
1

ˆ ˆ'k kx Fx 

1 1
ˆ ˆ,  'k kGenerally x x 

ˆ ˆ ˆ' ( ')x x K z Hx  

:

:

ˆ ' :  

z Hx v Actual

z measurement

z Hx Observation error

 



1

1

ˆ ˆ ˆˆ ˆ- ' ( ' ) and ' '

ˆ ˆ ˆ- ' ( ' )

k k k k

k k

x x K z z z Hx

x x K z Hx





  

 

Additional
Reference
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• Estimation Error

• Covariance = cost function of estimation error
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4. Kalman Gain

How to minimize Estimation Error

2 2ˆ{ } {( ) }P E e E x x  

ˆe x x 

2 2ˆ{ } {( ) }P E e E x x   2

2

2

2

ˆ ˆ{( ' ( ') ) }

ˆ ˆ{( ' ( ') ) }

ˆ ˆ{( ' ( ' )) }

ˆ{(( ' )( ) ) }

P E x K z Hx x

E x K Hx v Hx x

E x x Kv KH x x

E x x I KH Kv

   

    

    

   

ˆ ˆ ˆ' ( ')x x K z Hx  

ˆe x x 
ˆ' 'e x x 
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5. P update

4. Kalman Gain
1 Dim example of Minimum Estimation Error
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2

2 2 2 2

2 2 2

2 2

{( '( ) ) }

( ) { ' } { } 2( ) { }

( ) ' { } 0

( ) '

P E e I KH Kv

I KH E e K E v I KH KE ev

I KH P K E v

I KH P K R

  

    

   

   Independent
Event
Covariance=0

2{ }R E v

Our goal is Covariance P becomes smaller

2

2 ( ) ' 2 0

' '

'

dP
H I KH P KR

dK

HP HP
K

H P R S
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Remind Kalman Filter
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Kalman
Gain

Update
Covariance

Update
Estimate

Project
into k

Initial 
Estimates

Measurements

Update states
Projected
Estimate

| 1

1

| 1

T

k k k k k k

T

k k k k k

S H P H R

K P H S







 


| 1

| | 1

ˆ ˆ

ˆ ˆ ˆ

k k k k k

k k k k k k

y z H x

x x K y





 

 

| | 1( )k k k k k kP I K H P  

| 1 1| 1

| 1 1| 1 1

ˆ ˆ
k k k k k k k

T

k k k k k k k

x F x B u

P F P F Q

  

   

 

 

1k k k k k k

k k k k

x F x B u w

z H x v

  

 
1| 1

ˆ
k kx  
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Understanding Matlab Code with K.F.

• We don’t know exact w, v

• But, we know Covariance from 

Gaussian Distribution of w,v.

1k k k k k k

k k k k

x F x B u w

z H x v

  

 

| 1

1| 1

ˆ : Prediction (xp)

ˆ : Estimate (xe)

k k

k k

x

x



 

Initial Estimates 1| 1
ˆ ( 3)k kx xp  
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Understanding Matlab Code with K.F.

1. Prediction
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1k k k k k k

k k k k

x F x B u w

z H x v

  

 

| 1

1| 1

ˆ : Prediction (xp)

ˆ : Estimate (xe)

k k

k k

x

x
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State variable cannot be Directly Measured

We should estimate state variable by Prob.
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1k k k k k kx F x B u w   ~ (0, )w N Q

| 1 1| 1

| 1 1| 1 1

ˆ ˆ

ˆ ˆ

: covariance  of  state  variable  estimate

k k k k k k k

prediction k estimate k k

T

k k k k k k k

x F x B u

x F x B u

P

P F P F Q
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Understanding Matlab Code with K.F.

2. Kalman Gain

• New Estimate

= Prediction + Measure * 

Kalman Gain
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| 1

1

| 1

 
T

k k k k k k

T

k k k k k

Kalman Gain

S H P H R

K P H S







 



(observation) ,   v~N(0,R)k k k kz H x v 



T&C LAB-AI

Dept. of Intelligent Robot Eng. MU

Robotics

Understanding Matlab Code with K.F.

3. Correction(Update Estimate)

• We want to know             but only know estimate        .

• We also know prediction
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1| 1
ˆ

k kx  1kx 

| 1
ˆ

k kx 

| 1

| | 1

| | 1

ˆ ˆ

ˆ ˆ ˆ

( )

k k k k k

k k k k k k

k k k k k k

Correction

y z H x

x x K y

P I K H P
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Example Test3
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Blue: Real dynamics
Red: Prediction
Green: Estimate 
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Blue: Real dynamics
Red: Prediction
Green: Estimate 

Process Error

Green(corrected estimate) follows 
Red(Prediction)
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Covariance P becomes very Smaller.

• Process Noise Covariance Q makes system to be 

oscillatory.

• P(Covariance of state variable estimate) becomes 

smaller  State variable estimate is believable.
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