Mobile Robot Introduction to Probabilistic Methods Lecture 6

Jeong-Yean Yang

2020/12/10

Probabilistic Approaches for SLAM

Why we use Probability?

1

Why SLAM is Problematic?

Where am I? If I see a map, I Know position.

We cannot see an entire map. Without exploration, We cannot get a map

Localization

VS.

Mapping

Why SLAM is Problematic? Localization and Mapping occur coincidentally

- Localization requires Map
- Mapping requires position information
 - A mobile robot wants Localization and mapping at the same time

A robot must do What we did

Everything in Probabilistic Robotics is NOT Sure(or Deterministic)

Dept. of Intelligent Robot Eng. MU

6

SLAM Example

- SLAM: State is NOT directly observed
 - (1) Every states are considered as Probabilistic Distribution.

Position is NOT a vector Position is also a distribution

SLAM uses Mapping,

which maps Partial information onto Final Results (2)

Wall is Not Deterministic, but a Probability ⁸ S

SLAM with Kalmann Filter or Particle Filter

$$x_{k+1} = F_k x_k + w_k$$

$$z_k = H_k x_k + v_k$$

Linear System

NonLinear System

 $z_k = h_k(x_k, v_k)$

 $x_k = f_k(x_{k-1}, w_k)$

- SLAM: Simultaneous Localization And Mapping
- Assumption:

- Sensor information is Poor(inaccurate \rightarrow but Probabilistic)

- Probabilistic Approach
 - We are familiar with accurate variable (x=3, y=2)
 - But in an actual world, x is not 3 in general.

Why Probabilistic Approach?

- Mapping (or Registration)
 - Each scene is Not Perfect. \rightarrow Probabilistic distribution
 - Imperfect scene is Probabilistically merged
 - Repetitive Sampling improves accuracy
 - Sequential (Continuous) Observation(Scan) is NOT the sum of each one.
 - Sampling(Not all data) saves Computational burdens.
- Precondition:

- Assume that Everything is Probabilistic.

Analogy:

Sample (or Particle) is Probability

Non Parametric Method

- Bayesian Classifier
 - Random data X has Probabilistic Distribution

$$x \sim N(\mu, \sigma^2) \rightarrow \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
 (Gaussian)

- Parametric estimation
- Non Parametric Method
 - No explicit distribution like Gaussian
 - Parameters: ex) Mean, sigma
 - Remind that Gaussian distribution requires ASSUMPTION.
 - Sample data generates some estimation function (Inferential type)
 - Non parametric method has amount of parameters like Neural network.

kth Nearest Neighbor

- Developed in 1960.
- Easy to understand it (Even very simple)
- Example(Tall and ~Tall)

In case of Bayesian Classifier

• Find Gaussian distribution from sample data

X= height

$$P(w_1 \mid x) = \frac{P(x \mid w_1) P(w_1)}{P(x)} \xrightarrow[]{\circ} P(w_2 \mid x) = \frac{P(x \mid w_2) P(w_2)}{P(x)}$$

$$P(x) \xrightarrow[]{\circ} P(x) = \sum P(x \mid w_i) P(w_i) \xrightarrow{} P(x)$$

$$P(x) = \sum P(x \mid w_i) P(w_i) \xrightarrow{} P(x)$$

$$P(x) = \sum P(x \mid w_i) P(w_i) \xrightarrow{} P(x)$$

$$P(x) = \sum P(x \mid w_i) P(w_i) \xrightarrow{} P(x)$$

Nearest Neighbor

• Find the nearest sample to a given X

- If the nearest one is in a class w1, then x is w1.
- If the nearest one is in a class w2, then x is w2.
- Very simple..

Kth Nearest Neighbor

- "Kth" means that find the nearest neighbors with k number.
- More number class is the result

Ex) 3th Nearest neighbor

2 > 1. therefore, it is tall.

Hand Writing Recognition

Example 5x5 writing

Instance = 25 dimension vector

X=[0,1,1,0,0, 1,1,0,1,0, 1,0,0,1,1, 1,1,1,1,1, 1,0,0,0,1]

 $S \leftarrow si$ Distance= |x1-S1|+|x2-s2|+...|x25-s25|Find the minimum distance.

- Example: test1
- See result.

- Oops.
- Recognition is so easy like this?
 - Generally, No.
- Why it is so good?

Features of KNN

- Even Image is possible
 - Ex) Instance x is 640x480 dimension.
- Most learning method do learning after sampling.
- When kNN is learned?
 - When Sample is added, there is NO learning.
- However, kNN does not do learning procedure.
- Learning occurs, when we find nearest neighbors.
 → Lazy learning.
- Problem
 - With more sample, comparison is painful process.

Why kNN rather than 1-NN ?

- 1-NN finds the nearest neighbor.
 - Very specific solution (Over fitting)
- K-NN finds the k nearest neighbors.
 - Less specific solution \rightarrow Not Sensitive to Noisy sample.

Distance of KNN

- When x is an instance vector,
- Generally, 2 norm is used for distance measurement
 - 1-Norm: absolute value , |x|
 - 2-Norm: vector distance

$$||X|| = \sqrt{x^2 + y^2 + z^2}$$

- Distance of NN
 - $S = \{S_1, S_2, S_3, \dots S_N\}$
 - If the current X is added, S={ $s_1, s_2, s_3, \dots s_N, s_{N+1}$ } where $s_{N+1} \leftarrow X$.

Distance = $||X - s_i|| = ||e_i|| = \sqrt{e_1^2 + e_2^2 + e_3^2 + ... + e_{Dim}^2}$

Discrete Problems for KNN

- Continuous data
- X=(0.01, 0.1, 0.4)
- Si=(1.2, 0.4, 0.2)
- Distance = 1.2434

- Hand writing example
- X=(0,1,0,1,0,0)
- Si=(1,0,0,0,0,0)
- Sj=(0,1,0,0,1,1)
- Distance
- ||X-Si|| = sqrt(3)
- ||X-Sj|| = sqrt(3)
- Discrimination is not so
 accurate!
 _____21

Clustering Method Important Tools for Intelligent Robotics

• Pattern recognition requires Class definition

2 classes

• How many classes here?

• There are only two lumps \rightarrow Two clusters.

Clustering Method find how many clusters are there

- Many clustering methods.
- Example) K Means Clustering Method.
- 1. Assume there are K clusters.
- 2. Guess each centroid of cluster.
- 3. Find k points to closest centroid
- 4. Recompute the centroid of each cluster.

Example) K means Clustering

Example) K means Clustering Centroid comes close to mean value

Centroid of Cluster What is it?

- In k means cluster,
 - centroid approaches mean value of the test distribution.
 - But it is not on mean value.
 - Why?
- Think the role of K mean cluster.
 - K closest points are Not whole data. Just Sample.

 \rightarrow In each turn, K mean clustering method find the centroid of K closest points.

- If Initial centroid is biased, centroid is sometimes biased.

• If we guess wrong number of centroid, how it works?

Why we need Observer?

Probabilistic Approach toward Kalman Filter

You Measure Everything?

• Your graduation is on Prof. Y's decision

So, We guess X from Observation Z

Your Estimation Your Measurement Your Guess

Z: observation

We only know Z

His standard His mind His viewpoint

X: Actual State

We don't know X

Can you Read his Mind?

How we Improve P(x|z)? The best way is Repetitive Confirmation

You Focused on Why P(X|Z) is improved?

We Do Not know X but, P(X|Z) becomes increase to 1

Basics of Control for Kalman Filter

Dept. of Intelligent Robot Eng. MU

Kalman filter

- Kalman Filter(KF)
 - Estimates current state with observed state.
 - Estimation error is minimized by using Gaussian concept
 - Prediction + Update process.

KF model

$$x_k = F_k x_{k-1} + B_k u_k + w_k$$
$$z_k = H_k x_k + v_k$$

$$\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1} + B_k u_k$$

$$P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + Q_{k-1}$$

$$\hat{y}_k = z_k - H_k \hat{x}_{k|k-1}$$

 $S_{k} = H_{k}P_{k|k-1}H_{k}^{T} + R_{k}$ $K_{k} = P_{k|k-1}H_{k}^{T}S_{k}^{-1}$ $\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_{k}\hat{y}_{k}$ $P_{k|k} = (I - K_{k}H_{k})P_{k|k-1}$

Test3.m

Pre Knowledge for KF.

- State space expression
- 2nd order mass-spring-damper system.

 $m\ddot{x} + c\dot{x} + kx = F(t)$

• Second order differential equation has two solutions

 $m\ddot{x}_h + c\dot{x}_h + kx_h = 0$ Homogeneous Solution

 $m\ddot{x}_p + c\dot{x}_p + kx_p = F(t)$

Particular solution

Easier than 1st order, ay''+by'+cy=0Define $Dy = \frac{dy}{dx}$ $\rightarrow aD^2y + bDy + cy = 0$ $\rightarrow (aD^2 + bD + c)y = 0$ $D = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

• D operator for simplifying 2nd order Differential Eq.

$$ex)y''+5y'+4y=0$$

$$D^{2}y+5Dy+4y=0$$

$$(D^{2}+5D+4)y=0$$

$$(D+1)(D+4)y=0$$

$$(D+1)(D+4)y=0$$

Remind 1st order Equation $(D+1)y = 0 \quad or \quad (D+4)y = 0$ $y'+y=0 \quad or \quad y'+4y=0$ $y = C_1 e^{-x} \quad or \quad y = C_2 e^{-4x}$ $\therefore y = C_1 e^{-x} + C_2 e^{-4x}$

Mass-Spring System

m y"+ ky = 0
mD² y + ky = 0

$$(D^{2} + \frac{k}{m})y = 0$$

 $\left(D - \sqrt{\frac{k}{m}i}\right)\left(D + \sqrt{\frac{k}{m}i}\right)y = 0$
Remind
 $(D - z_{1})(D - z_{2})y = 0$
 $\Rightarrow y = C_{1}e^{z_{1}x} + C_{2}e^{z_{2}x}$

 $y = c_1 e^{\sqrt{\frac{k}{m}ix}} + c_2 e^{-\sqrt{\frac{k}{m}ix}}$ $= c_1 e^{wix} + c_2 e^{-wix}$ $= c_1 (\cos(wx) + i\sin(wx))$ $+ c_2 (\cos(wx) - i\sin(wx))$ $= A\cos(wx) + B\sin(wx)$ $= C\sin(wx + \varphi)$

Hyperbolic function

Particular Solution of 2nd order Diff. Eq.

1 ex) y"+5y'+4y = cos 2x $(D^{2}+5D+4)$ y = cos 2x $(D^{2}+5D+4)$ y_h = 0 y_h = c₁e^{-x} + c₂e^{-4x}

$$y = y_p + y_h$$

= $\frac{1}{10} \sin 2x + c_1 e^{-x} + c_2 e^{-4x}$

 $2 (D^2 + 5D + 4) y_p = \cos 2x$ *if* $y_p = \alpha \sin 2x$ $y'' = -4\alpha \sin 2x, \quad y' = 2\alpha \cos 2x$ \Rightarrow $-4\alpha \sin 2x +$ $5*2\alpha\cos 2x +$ $4*\alpha \sin 2x = \cos 2x$ $10\alpha\cos 2x = \cos 2x$ $\therefore \alpha = 1/10$

Particular Solution is the Controller

• U : controller

 $m\ddot{y} + c\dot{y} + ky = F(t) = u(t)$

• U=0 \rightarrow Homogenous solution \rightarrow System dynamics

 $m\ddot{y} + c\dot{y} + ky = 0$

- If we define $y = x_1$, $\dot{y} = x_2$, every dynamics is expressed as state variable x.
- \rightarrow State space

State Space Notation

$$\dot{x} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -\frac{k}{m} & -\frac{c}{m} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

State Space Notation with Control Input

$$\dot{x} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$$

$$\dot{x} = Ax + Bu$$

Laplace Transform and Eigenvalue of A

$m\ddot{y} + c\dot{y} + ky = 0$	/	(0	1
$(mD^2 + cD + k) \mathbf{y} = 0$		$\dot{x} = \left -\frac{k}{k} \right $	$-\frac{c}{x}$
$(D-w_d i)(D+w_d i)y=0$		m	m)
$-c\pm\sqrt{c^2-4mk}$ c .		Av =	λv
$w_d = \frac{1}{2m} = -\frac{1}{2m} \pm w_d l$		$(A-\lambda)$	λI) $v = 0$
$-\frac{c}{t}$.	, ,	Det(A	$(A - \lambda I) = 0$
$y = e^{-2m} (c_1 e^{w_d tx} + c_2 e^{-w_d tx}) $	$(-\lambda$	1	(a) k
	$Det _k$	$-\frac{c}{2}-\lambda$	$=\lambda\left(\frac{c}{m}+\lambda\right)+\frac{\kappa}{m}=0$
	(m)	m	
	02	c, k	N N
	$\lambda^2 + \delta$	$\frac{-\lambda}{m} + \frac{-\alpha}{m} = 0$) 45 🜊

Dept. of Intelligent Robot Eng. MU

State Space Model

• Exactly, Linear Model is expressed as,

$$\dot{x} = Ax + Bu$$
 Eig(A) are root(Poles).

• Non linear system dynamics

$$\dot{x} = f(x) + u$$

• Generally, Non Linear system dynamics

$$\dot{x} = f(x, u)$$

Feedback Observation

- Assume that state variable x can be observed.
- But it is sometimes impossible or corrupted with noise

2nd order Mass-Spring-Damper

• Example) exms.m

Our Model is Perfect? No, it has uncertainties and Model is Imperfect

2nd order mass-spring-damper system

$$\dot{X} = \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{pmatrix} X + Bu + \\ = AX + Bu$$
$$\dot{X} = AX + Bu$$
$$\dot{X} = AX + Bu + N$$
$$N : \text{Process Noise}$$

$$Y = CX + Du$$
$$= [1 \quad 0] \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + 0u$$
$$= x$$
$$Y = CX + Du + N'$$

N': Measurement Noise

Process Noise

 $\dot{X} = AX + Bu + N$ N: Process Noise

Ex) exmsprocess.m
% m*xdd + c*xd + kx = F = 0;
for i=1:1000
 s=[s; x xd];
 <u>Na = 0.1*randn;
 Nv = 0.1*randn;
 N=[Na,Nv]';
 xdd = (0-k*x-c*xd)/m+Na;
 xd = xdd*dt+xd+Nv;
 x = xd*dt+x;
end</u>

Dept. of Intelligent Robot Eng. MU

Measurement Noise

$$Y = CX + Du + N'$$
$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + 0u + N'$$
$$= x + N$$

Remind that All measurements x for 'e=xd-x' are actually Y.

Ex) exmsm.m

% m*xdd + c*xd + kx =
for i=1:1000
 s=[s; x xd];
 y=x+0.1*randn
 x=y;
 xdd = (0-k*x-c*xd),
 xd = xdd*dt+xd+Nv;
 x = xd*dt+x;
end

Dept. of Intelligent Robot Ling. NO

Process and Measurement Noises are UNAVOIDABLE Problems

- In spite of all, why we did not add noise model?
 - We neglect noises in many cases
 - Noise model is somewhat complex and unpredictable
 - Also, you are undergraduate student..
- Intuitive Example
 - Encoder signal is an actual value?
 - Encoder is perfect but Joint angle is NOT perfect
 - Assumption of that encoder is same with joint angle

Encoder is perfect

Marker signal is not true. Why? It is attached on deformable skins

Expectation in Probability

• E{x}: Expectation, What a value occurs with Prob.

$$\mathbf{E}\{\mathbf{x}\} = \int x p(x) \, \mathrm{d}\mathbf{x} \quad \text{or} = \sum_{k} x_{k} p_{k}$$

• Remind Probabilistic density function - Ex) Gaussian 1 - (-1)(x)

- Ex) Gaussian

$$PDF(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

- Expectation of "1" of Dice throwing $E\{x\} = \sum_{k} x_{k} p_{k} = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6}$ $= \frac{\sum_{k} x_{k}}{6} = \mu$
- Expectation converges into Mean value.

>>>

Goal of Kalman Filter

Dept. of Intelligent Robot Eng. MU

Dept. of Intelligent Robot Eng. MU

Robotics

57 57 Dept. of Intelligent Robot Eng. MU

 $w \sim N(0, Q)$

 $x \sim N(\hat{x}, P)$

 $v \sim N(0, R)$

State Equation $x_{k} = F_{k}x_{k-1} + B_{k}u_{k} + w_{k}$ $z_{k} = H_{k}x_{k} + v_{k}$

Prediction

$$\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1} + B_k u_k$$

$$P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + Q_{k-1}$$
Kalman Gain
$$S_k = H_k P_{k|k-1} H_k^T + R_k$$

$$K_k = P_{k|k-1} H_k^T S_k^{-1}$$

Correction

 $\hat{y}_{k} = z_{k} - H_{k} \hat{x}_{k|k-1}$ $\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_{k} \hat{y}_{k}$ $P_{k|k} = (I - K_{k} H_{k}) P_{k|k-1}$

Kalman Filter Definitions

state vector x cannot be directly measured

x:*state vector*

 \hat{x} : state vector estimate

z: *observation vector*

- *u*:*control* vector
- F: state transition

B:control

P:covariance of state vector estimate

Q:process noise covariance

R:measurement noise covariance

H: observation matrix

- $\hat{x}_{k|k-1}$: Prediction (xp)
- $\hat{x}_{k-1|k-1}$: Estimate (xe) 58 Dept. of Intelligent Robot Eng. MU

Derivation of K.F.

invariant system

 $x_{k+1} = Fx_k + w$ $z_k = Hx_k + v$

x: actual value $\hat{x}: estimated value$ $Our \ Goal: \hat{x} \to x$

→ Unknowns

→ Estimation from Model But, How we update it? Update \hat{x} with y

Before update (Prediction)

$$\mathbf{A'} = A_{k|k-1}$$

After Update

$$\mathbf{A} = A_{k|k}$$

1. Estimation of X

- We want to know an actual value, X
- X is not measured directly
- Thus, instead of X, we use estimation, \hat{X}
- But, remind that there is Process Error

1. Estimation of X with \hat{X} and covariance, P

Perfect Model

$$X_{k+1} = AX_k + BU_{k+1}$$

Process error

$$X_{k+1} = AX_k + BU_{k+1} + w_{k+1}$$

• Actual value X is divided into two factor

2. Prediction of \hat{X} by system model

• Estimation \hat{X} changes under system dynamics

$$X_{k+1} = AX_k + BU_{k+1} + W_{k+1} \qquad \hat{X}_{k+1} = A\hat{X}_k + BU_{k+1}??$$

Actual value, X

 $X_{k+1} = AX_k + BU_{k+1} + w_{k+1}$

Dept. of Intelligent Robot Eng. MU

63

2. Prediction of X by system model

- Estimation \hat{X}_k is given, but \hat{X}_{k+1} is Not clear.
- Thus, we use a new concept, Prediction.
 - Prediction is temporarily used by system dynamics
 - Prediction will be updated by measurement

3. Prediction of Covariance, P

• Definition of Covariance, P

$$P = E\{e^2\}, \quad e = \hat{x} - x$$

P means how much estimation is biased from an actual value

• Prediction of Covariance, P'

$$P' = ? \quad e' = \hat{x}' - x$$

$$P' = E\{e_{k+1} 'e_{k+1} '\}$$

$$= E\{(\hat{x}'_{k+1} - x_{k+1})^{2}\}$$

$$= E\{(\hat{x}' - Fx - w)^{2}\}$$

$$= E\{(F\hat{x} - Fx - w)^{2}\}$$

$$= E\{(Fe - w)^{2}\} = F^{2}E\{e^{2}\} + E\{w^{2}\}$$

$$= F^{2}P + Q + 0$$

64 Standard Dept. of Intelligent Robot Eng. MU

4. Definition of Kalman Gain Measurement Updates Estimation

Estimation $x \rightarrow \hat{x}$ Actual System But we don't know it Prediction $x_{k+1} = Fx_k + w$ $\hat{x}'_{k+1} = F\hat{x}_k$ $z_k = H x_k + v$ $\hat{z}'_{k+1} = H\hat{x}'_{k+1}$ w, v cannot be directly measured, Update: $z_{k+1} - \hat{z}'_{k+1} \rightarrow K \ gain \rightarrow \hat{x}_{k+1} - \hat{x}'_{k+1}$ But, F and H can be modeled. Measurement, z Estimation is updated $\therefore \hat{x} - \hat{x}' \triangleq K(z - \hat{z}')$ 65 Dept. of Intelligent Robot Eng. MU

 $X_{k+1} = FX_k + W$ w, v : Noise State Estimation \hat{X} Additional Reference **Estimation Error** $e = \hat{x} - x$ $z_k = Hx_k + v$ **Every values have Prob. distribution Covariance P** $P = E\{ee^T\} = E\{e^2\}$

Objective
Prob. Error
Becomes zero.
$$E\left\{\begin{bmatrix} e_1e_1 & e_1e_2\\ e_1e_2 & e_2e_2 \end{bmatrix}\right\} \Rightarrow E\left\{\begin{bmatrix} e_1e_1 \rightarrow 0 & 0\\ 0 & e_2e_2 \rightarrow 0 \end{bmatrix}\right\}$$

Hinimization

Prediction $\hat{x}_{k+1}' = F\hat{x}_k$ We know only F, but don't know w and v Generally, $\hat{x}_{k+1} \neq \hat{x}_{k+1}$

Kalman Gain definition, K (Brilliant idea) z = Hx + v : Actual

 $\hat{x} = \hat{x}' + K(z - H\hat{x}')$, z:measurement

 $\langle z - H\hat{x}' : Observation \ error$

$$\hat{x} - \hat{x}' = K(z_k - \hat{z}'_k) \text{ and } \hat{z}'_k = H\hat{x}'_{k+1}$$

 $\hat{x} - \hat{x}' = K(z_k - H\hat{x}'_{k+1})$

4. Kalman Gain How to minimize Estimation Error

Estimation Error •

$$e = \hat{x} - x$$

Covariance = cost function of estimation error \bullet $P = E\{e^2\} = E\{(\hat{x} - x)^2\}$

$$P = E\{e^{2}\} = E\{(\hat{x} - x)^{2}\}$$

$$\hat{x} = \hat{x}' + K(z - H\hat{x}')$$

$$e = \hat{x} - x$$

$$e' = \hat{x}' - x$$

$$P = E\{(\hat{x}' + K(z - H\hat{x}') - x)^{2}\}$$

$$= E\{(\hat{x}' + K(Hx + v - H\hat{x}') - x)^{2}\}$$

$$= E\{(\hat{x}' - x + Kv - KH(\hat{x}' - x))^{2}\}$$

$$= E\{(\hat{x}' - x + Kv - KH(\hat{x}' - x))^{2}\}$$

$$= E\{(\hat{x}' - x)(I - KH) + Kv)^{2}\}$$

 $(+Kv)^{2}$

5. P update
4. Kalman Gain
1 Dim example of Minimum Estimation Error

$$P = E\{(e'(I - KH) + Kv)^2\}$$

$$= (I - KH)^2 E\{e'^2\} + K^2 E\{v^2\} + 2(I - KH)KE\{ev\}$$

$$= (I - KH)^2 P' + K^2 E\{v^2\} + 0$$

$$= (I - KH)^2 P' + K^2 R$$

$$R = E\{v^2\}$$
Independent
Event
Covariance=0

Our goal is Covariance P becomes smaller

$$\frac{dP}{dK} = -2H(I - KH)P' + 2KR = 0$$

$$\therefore K = \frac{HP'}{H^2P' + R} = \frac{HP'}{S}$$

68 S Dept. of Intelligent Robot Eng. MU

Remind Kalman Filter

69 S Dept. of Intelligent Robot Eng. MU

Understanding Matlab Code with K.F.

$$x_k = F_k x_{k-1} + B_k u_k + w_k$$
$$z_k = H_k x_k + v_k$$

- We don't know exact w, v
- But, we know Covariance from Gaussian Distribution of w,v.

Initial Estimates
$$\hat{x}_{k-1|k-1}(xp=3)$$

 $\hat{x}_{k|k-1}$: Prediction (xp)
 $\hat{x}_{k-1|k-1}$: Estimate (xe)

Understanding Matlab Code with K.F. 1. Prediction


```
w = sqrt(Q) * sin(0.1*i);
v = randn(1) * sqrt(R);
% system dynamics
x = (1-dt) * x + w;
z = h*x +v;
F = (1-dt);
% prediction
xp = F*xe;
Pp = F*Pe+Q;x_k = F_k x_kz_k = H_k x_k\hat{x}_{k|k-1} = F_k \hat{x}_{k-1}
```


Dept. of Intelligent Robot Eng. MU

State variable cannot be Directly Measured We should estimate state variable by Prob.

$$x_{k} = F_{k}x_{k-1} + B_{k}u_{k} + w_{k} \quad w \sim N(0,Q)$$

$$\Rightarrow \hat{x}_{k|k-1} = F_{k}\hat{x}_{k-1|k-1} + B_{k}u_{k}$$

$$\hat{x}_{prediction} = F_{k}\hat{x}_{estimate} + B_{k}u_{k}$$

$$P: \text{covariance of state variable estimate}$$

$$P_{k|k-1} = F_{k}P_{k-1|k-1}F_{k}^{T} + Q_{k-1}$$

$$\sum_{j=1}^{72} \sum_{j=1}^{72} \sum_$$
Understanding Matlab Code with K.F. 2. Kalman Gain

 z_k (observation) = $H_k x_k + v_k$, v~N(0,R)

```
% prediction
xp = F^*xe;
Pp = F*Pe+Q;
% Kalman gain
S = h*Pp*h + R;
k = Pp*h/S;
% Correction or Update
y = (z - h*xp);
xe = xp+k*y;
Pe = (1-k*h)*Pp;
```

 New Estimate
 = Prediction + Measure * Kalman Gain

Kalman Gain

$$S_{k} = H_{k}P_{k|k-1}H_{k}^{T} + R_{k}$$

$$S_{k} = H_{k}P_{k|k-1}H_{k}^{T}S_{k}^{-1}$$

$$K_{k} = P_{k|k-1}H_{k}^{T}S_{k}^{-1}$$

$$K_{k} = P_{k|k-1}H_{k}^{T}S_{k}^{-1}$$

73 Topt. of Intelligent Robot Eng. MU

Understanding Matlab Code with K.F. 3. Correction(Update Estimate)

- We want to know x_{k-1} but only know estimate $\hat{x}_{k-1|k-1}$
- We also know prediction $\hat{x}_{k|k-1}$

```
% Correction or Update
y = (z- h*xp);
xe = xp+k*y;
Pe = (1-k*h)*Pp;
```

Correction $\hat{y}_{k} = z_{k} - H_{k}\hat{x}_{k|k-1}$ $\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_{k}\hat{y}_{k}$ $P_{k|k} = (I - K_{k}H_{k})P_{k|k-1}$

Example Test3

Dept. of Intelligent Robot Eng. MU

Covariance P becomes very Smaller.

- Process Noise Covariance Q makes system to be oscillatory.
- P(Covariance of state variable estimate) becomes smaller → State variable estimate is believable.

