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Multi Dimensional 

Probabilistic Distribution
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Gaussian Distribution
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With C++ or Python,

How to Generate Gaussian Distribution?

• Rand() returns integer from 0 to RAND_MAX(32767)

– Rand() is NOT Gaussian(Normal) distribution

• Remind the video
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N(0,1) returns Gaussian Distribution 

randn(1,1000) generates

1000 samples 

Question: 

How we generate x with 

mean and standard 

deviation?
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Gaussian Generation 

• Mean value:      is a offset from 0

• Standard deviation
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Gaussian Distribution or

Normal Distribution(Z)

• We learn it at high school, TT.

• Z is called “Normal Distribution”

• X is normalized with mean and standard deviation
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Probability in 2D Space

• How to generate 2D Gaussian Distribution?

– Easy. A= randn(1000,2) and plot(A(:,1),A(:,2),’.’)
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Quiz 1
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Quiz 2

Why PDF is Over One?

• What is PDF?

• PDF is not a Probability.  p(0) may be over 1.

• Gaussian function is NOT a Probabilistic function

But is a Probabilistic Density Function
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Cumulative Distribution Function(CDF)

is the integration of PDF

• Think Probability Exactly
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Probabilistic Density Function

in n-dim. Space

• 1Dim

• N-Dim

• Look, Sigma matrix
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Two types of Probability

• A Priori Probability

– When you use probability, you use a prior probability

• Posterior Probability (Conditional probability)

– Bayesian probability

– Prob. Of A on condition that B occurs,

• A prior and Posterior probability are very different.
14
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Conditional Probability

• What is Pr(A|B)?

– Probability of A under the Probability of B

– Or Probability of A within the given B
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Posterior Prob.

• When events A and B occur,

• P(A): Probability of A occurrence

• P(B): Probability of B occurrence.

• P(A^B): Probability of Both A and B occurrence

• Definition:
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Engineering Notation
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In engineering, likelihood is one of the popular solution.
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Prob. Of Event X between w1 and w2

• p(x)= Probability of event x’s occurrence

• Posterior probability must be required for Classification
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Concept of Clustering2
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What is a Clustering?

• Grouping similar objects and labeling a Group

– Labeling a Class

• Grouping a set of Objects which are more similar to 

each other than to those in other groups
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Clustering Method

Important Tools for Intelligent Robotics

• Pattern recognition requires Class definition

• How many classes here?

• There are only two lumps  Two clusters.
21
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Famous Clustering method

• 1. K-Means Clustering method

– Geometry based method

– Simple and low computational burdens.

– Shortcoming: Initial guess determines the final result

• 2. Expectation Maximization method

– Probabilistic method

– Very popular for fitting Mixture Distribution

– Back bone of Gaussian Mixture Model (GMM)
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K-Means Clustering

• Find Mean value (Centroid) for each cluster

• Algorithm

• 1. Assume there are K clusters.

• 2. Guess each centroid of cluster.

• 3. Find k points to closest centroid

• 4. Recompute the centroid of each cluster.

23

Centroid
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ex/ml/l12kmean.py

• Two groups with Blue and Red

• It looks easy to find two groups
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Real Problem is to find Two Groups

• It is NOT easy.

• By iteration, we find two groups from initial guesses.
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1 1 2 2l12kmean.test( , , , , )x y x y iteration   
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l2kmean.test with Different Guesses

• The Results are strongly affected by Initial Guesses

27

True value

(40,50) and (80,50) (20,30) and (80,80)
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Centroid of Cluster

What is it?

• In k means cluster, 

– Centroid approaches mean value of the test distribution.

– But, it is not on the Exact mean value.

– Why?

• Think the role of K mean cluster.

– K closest points are Not whole data. Just Sample.

 In each turn, K mean clustering method find the centroid 

of K closest points.

– If Initial centroid is biased, centroid is sometimes biased.

• If we guess wrong number of centroid, how it works? 

28
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Wrong Number of Groups

29

kmean.test3(50,50,70,70,60,30,20) kmean.test3(40,80,70,30,50,50,20)

• Thus, what is the Answer?  No answer in General.
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Expectation Maximization3
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Introduction to

Expectation Maximization

• Let’s think EM in a simple way.

• We have random variable, X

• Maybe, X has two groups.

• How we separate X with 

two groups, probabilistically?

31
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EM has two Steps

• Clusters are represented by Probability Distribution

– K-means Clustering is a set of data around centroids.

– But, clusters in EM are the Probabilistic Distribution

• Assumption:

– Data are the Mixture of Gaussian Distributions

– Blue, Red, and Green points are mixed with Gaussian distribution
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Simple EM Procedure 

33

We get labeled data Mix Randomly Initial guess of PDF

Compare PDF and 
rearrange class

Recalculate PDF

Expectation Maximization

Repeat E-M



T&C LAB-AIRobotics

Probabilistic Density Function has

mean and variance

• 0. Data is given

• 1. Guess groups

• 2. maximum PDF is wrong in some data

• 3. Find mean and variance for each group
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Expectation and Maximization

Step 1. Expectation

• Density function, p(x|c) for each cluster, C

• Density function, P(x) for clustering model, 

– W is the fraction of the Cluster C in the entire data

• Assign points to Clusters
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Expectation and Maximization

Step 2: Maximization

• Recompute Model
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EM in 1 Dim.

• Assume that there are 2 groups

• Guess x with Blue and Red groups

37

Blue ~ (1,1),   Red ~ (3,1)N N
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• Use same initial guess

• It is very Robust 
38

1 2

1 2

1 2

ˆ ˆ3, 5

1

0.5W W

 

 

 

 

 



T&C LAB-AIRobotics

But, EM is designed Carefully

• EM looks simple. 

• E-M or M-E shows very different result

• 1. Expectation with given parameters

– Initial Guess of mean, variance, and fraction factor, W are first 

used. 

– At the first step, Do not calculate mean, variance, and so on

• 2. Maximization with p(c|x), and not with p(x|c)

– E and M looks similar. It causes confusion

• 3. If M(calculate parameters) works first, EM often fails.

39
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Example) ex/ml/l12em1.py

Generate Blue and Red 

40

2Blue ~ (0,3 ),   Red ~ (10,1)N N
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Example) ex/ml/l12em1.py

Initial Guess

point label

0.2 0

1.3 0

10.1 1

3.3 0

11.5 1
41

• Matrix X has two column

– 1st column is random data

– 2nd column, label 0 is blue and 

label 1 is red

• Mb=mean of blue

• Sb= standard deviation of blue

• Mr = mean of red

• Sr =standard deviation of red

• W[1,1] = W1

• W[1,2] = W2
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Example) ex/ml/l12em1.py

Expectation

• P(x|C) is the p.d.f. of x with respect to a Cluster

• P(C|x) means a new Cluster, C is determined by 

p(x) comparison
42

1 2 3 4 5 6
ˆ ˆ ˆ, , , ˆ ˆˆ { }ˆ, ,x xxx x xx

1. This PDF is given by the 
previous(or initial)
Parameters.

2. Blue p(x3) < Red p(x3)

Change x3’s label is 1(red)



T&C LAB-AIRobotics

Example) ex/ml/l12em1.py

Maximization

• With a new Model, M’

• Recompute Wi

• New Mean and variance
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EM in 2Dim

• Above two points are regarded as Blue one in the 

right picture. 

– Because, EM is based on a probabilistic distribution. 44
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Why We Learn EM and GMM?
Imitation Learning is Not Doing Memorized Motion

45

• 1990’s: Encoder Recording and Replay 

• After 2005: Trajectories are considered as the set of 

Stochastic Process
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Gaussian Mixture Model4

46
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Gaussian Mixture Model

• Extend k-means Clustering into a Probabilistic framework

as like EM method

• Left signal is the mixture of Two Different Gaussian

– Goal of GMM is to find Multiple Gaussian Distributions
47
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Modeling of GMM

• Assume that the j th point of the vector x belongs to 

the i th Cluster.

• Gaussian PDF of the i th cluster is defined as,
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Example

i for Cluster and j for input, x
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Probability of 

the jth point belongs to the ith cluster
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Maximization

• What is the objective function?

• Log likelihood
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Maximization of Log likelihood
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Example of gmm1

• Edit ex/ml/gmm1

54

Blue: Data
Red : GMM
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Ref:

Maximum Likelihood Estimation(MLE)

• Estimating parameters of a probability distribution 

– by maximizing a likelihood function
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