Robot Learning: Reinforcement Learning

Lecture 10

양정연 2020/12/10

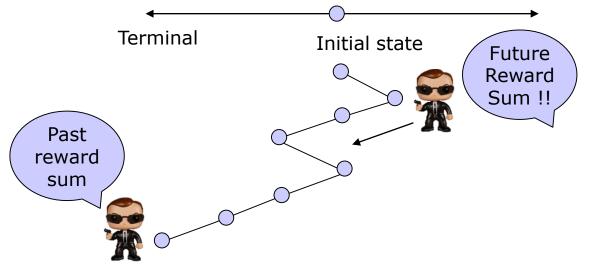
1 Reward and Return in RL

Past or Future Rewards

• 1. Viewpoint at the Terminal

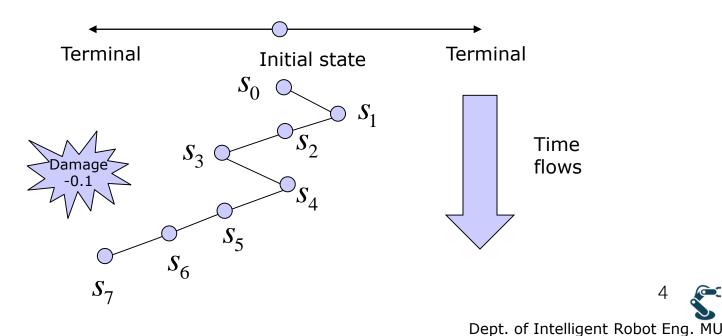
Return is the sum of all PAST rewards

- 2. Agent's viewpoint (RL uses this)
 - Return is the sum of all Future rewards.



Reward and Return

- Reward : get a reward in each state transition
 - Whenever an agent moves, it gets a reward from environment
 - Ex) +1,+2 at terminals and -0.1 at each turn
- State : state varies by time flows ($s_0 \rightarrow s_1 \rightarrow s_2 \dots \rightarrow s_t$)



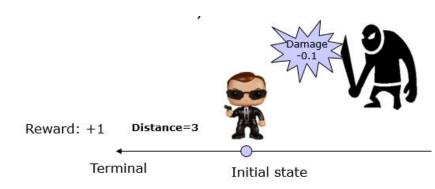
Reward and Return

• Return : summation of all rewards.

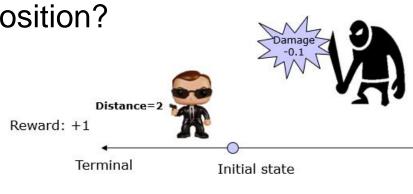
$$R = \sum_{k=1}^{\infty} r_k$$

- Ex) Rewards are -0.1,-0.1, 1.

– Return is -0.1-0.1+1 = 0.8



- Question: Return at another position?
 - Ex) Rewards are -0.1, and 1
 - Returns is -0.1+1 = 0.9

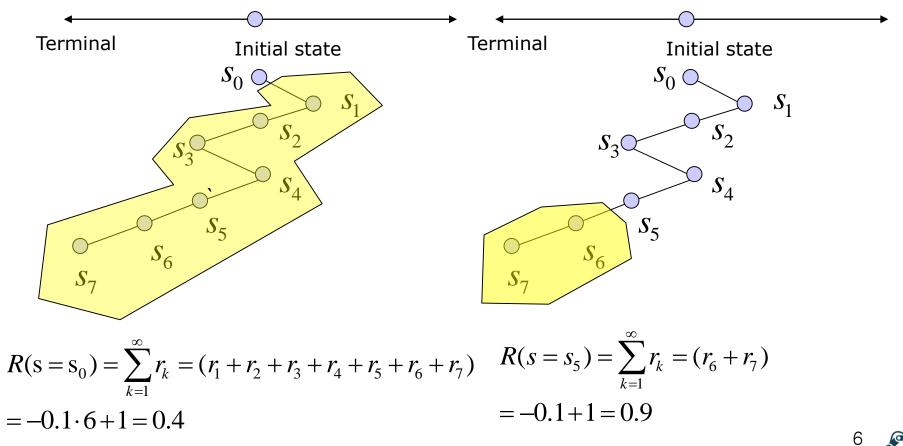


5

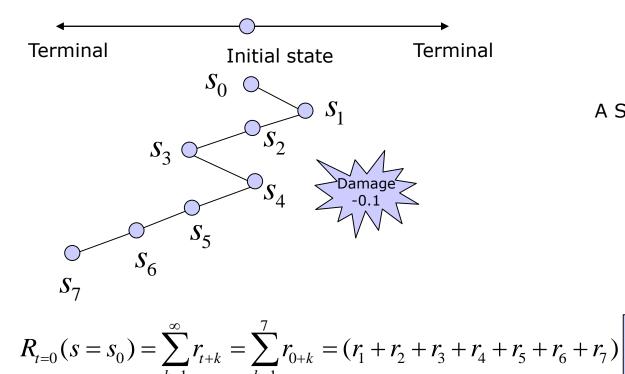
Dept. of Intelligent Robot Eng. MU

Return at Different Position

• Return is a function w.r.t. State Position



Example of a Single Return



= -0.1 - 0.1 - 0.1 - 0.1 - 0.1 + (-0.1 + 1) = 0.4

 $\Rightarrow R_{t=4}(s=s_4) = \sum_{k=1}^{\infty} r_{t+k} = \sum_{k=1}^{3} r_{4+k} = (r_5 + r_6 + r_7)$

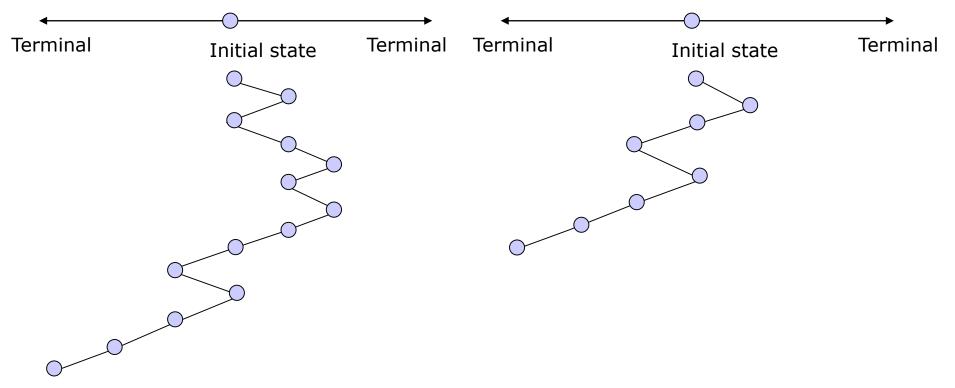
=-0.1+(-0.1+1)=0.6

A Single Return with one case

$$R_t = \sum_{k=1}^{\infty} r_{t+k}$$

Watch this, S0 =S4! However, because S4 is closer to S7, Rt=0 is smaller than Rt=4 (0.4< 0.6)

However, There are Many Return Values



Many possible returns are averaged for Learning

$$E\{R_t\} = E\left(\sum_{k=1}^{\infty} r_{t+k}\right)$$

Summary of Reinforcement Learning

- Future Reward
 - If an agent moves in future, how much reward does an agent obtains? (Not the past reward)
- Return = sum of all possible future rewards

$$R_t = \sum_{k=1}^{\infty} r_{t+k}$$

 Bigger Expectation of Return(sum of all future rewards) is Better for us → Reinforcement Learning!

$$E\{R_t\} = E\left(\sum_{k=1}^{\infty} r_{t+k}\right)$$

Expectation is Hard works.

- State value is based on Expectation
- In other words, we collect many path data.
 How we estimate expectation? We need Brilliant Idea!!
- Expectation is estimated by Iterative Method

$$E(x)_{N} = \frac{1}{N} \sum_{i}^{N} x_{i} \to E(x)_{N+1} = \frac{1}{N+1} \sum_{i}^{N+1} x_{i}$$

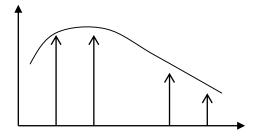
$$E(x)_{N+1} = \frac{1}{N+1} \left(x_{N+1} + \sum_{i=1}^{N} x_{i} \right) = \frac{1}{N+1} \left(x_{N+1} + NE(x)_{N} + E(x)_{N} - E(x)_{N} \right)$$

= $E(x)_{N} + \frac{1}{N+1} \left(x_{N+1} - E(x)_{N} \right)$
 $\cong E(x)_{N} + \alpha \left(x_{N+1} - E(x)_{N} \right) = \alpha x_{N+1} + (1-\alpha)E(x)_{N} \Rightarrow \text{Infinite Impulse Response}$

Dept. of Intelligent Robot Eng. MU

Estimated Expectation with IIR Filter

- In Digital signal processing (DSP)
- Finite Impulse Response (FIR) Vs. Infinite Impulse Response(IIR)
- Basic concept
 - A set of Impulses represents system behaviors.



 $\frac{Y(s)}{X(s)} = G(s), \text{ Laplace Transform of Impuse, } \delta(t) \text{ is } 1$ $\therefore Y(s) = G(s)$

FIR is a set of impulses, but IIR is the recursive set of impulses.

$$IIR: f_{k+1} = \alpha x_k + (1 - \alpha) f_k$$

11 S Dept. of Intelligent Robot Eng. MU

Average Filter Ex) ex/ml/l10iir.py

≻

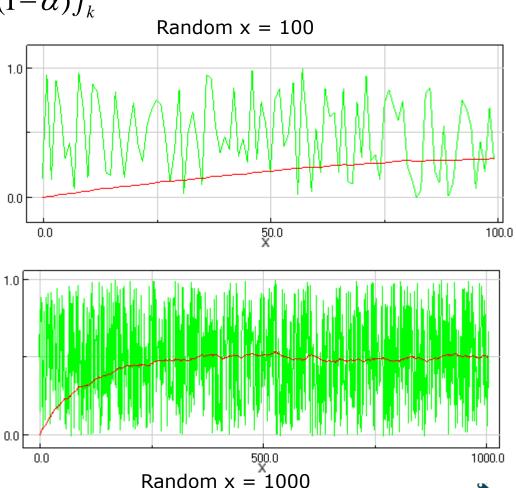
≻

• IIR Filter :
$$f_{k+1} = \alpha x_k + (1-\alpha) f_k$$

def demo2(): figure(1) clear()

```
s = 0;
n = 1000
for i in range(0,n):
    x= rand()
    s = s*0.99 + x*0.01
    graph(1)
    plot(x,'g')
    graph(2)
    plot(s,'r')
```

- S becomes
- averaged value, 0.5.



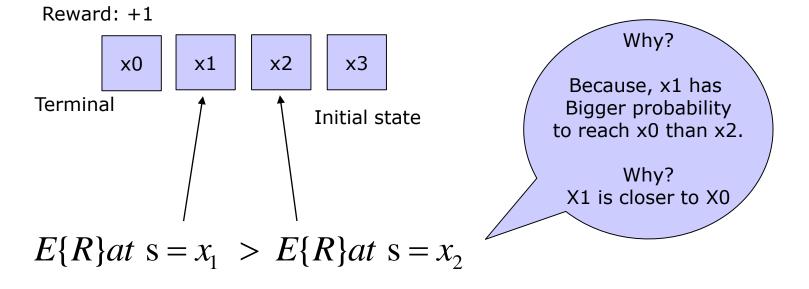
Dept. of Intelligent Robot Eng. MU

Important Meaning of Return 1

- Think next two cases
 - Case 1) $X3 \rightarrow X2 \rightarrow X1 \rightarrow X0$
 - Case 2) $X3 \rightarrow X2 \rightarrow X3 \rightarrow X2 \rightarrow X3 \rightarrow X2 \rightarrow X3 \rightarrow X2 \rightarrow X1 \rightarrow X0$
- With Negative Reward(eg, -0.1)
 - Case 1) -0.1*2+1 = 0.8(Return)
 - Case 2) -0.1*8+1 = 0.2(Return)
 - 0.8 is better than 0.2.
- Without Negative Reward
 - Case 1) 0*2 + 1= 1
 - Case 2) 0*8+1 = 1
 - Question : case 1) and case 2) are equal?????

Important Meaning of Return 2

- We Must think that Returns will be Expected.
 The Returns of Case 1) and Case 2) will be averaged.
- After Many cases are averaged, what happens?



Expected Return finds optimality without Negative Reward

- Remind that -0.1 reward is **helpful** to find the optimality
 - Long distance journey is NOT good for an agent.
 - Case 1) X3→X2→X1→X0 (best) → -0.1*2+1 = 0.8
 - Case 2) X3→X2→X3→X2→X3→X2→X3→X2→X1→X0 (poor) → -0.1*8+1 =0.2
- But, without negative reward, expected return is also good for which direction is Good or Not.
- Anyway, we can introduce the accelerating method by using discounted return.

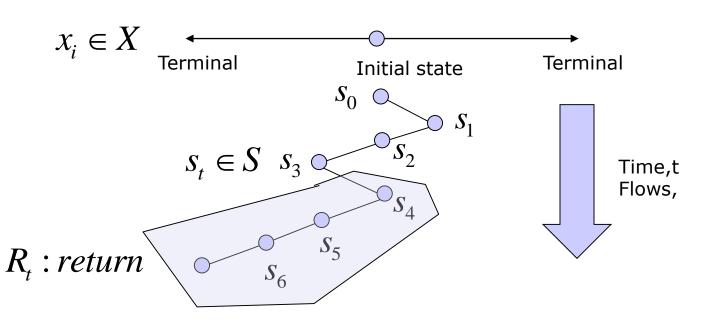
Dept. of Intelligent Robot Eng. MU

Summary of RL

- Future Reward
 - If an agent moves in future, how much reward does an agent obtains? (Not the past reward)
- Return = sum of all possible future reward
- Discounted Return : $R_{t=0} = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$
 - When a reward is far from the current state, discounted rate is larger.
 - This makes an effect on finding the optimal path without wasting repetitive state transitions like [3,2,3,2,3,2,3,2,1,0]
- Episode : one sequence from initial to terminal state 16

2 Monte-Carlo(MC) method

Monte Carlo (MC) Method



• If a state, s is equal to a position at x,

if
$$s_t = x_i \implies V(s_t) = V(x_i)$$

• From state, s, we can tell the function of position x.

Monte Carlo (MC) Method

Expected Return= State value Function

$$E(R_t) = E\left(\sum_{k=1}^{\infty} r(s_k)\right)$$

= $E\left(r(s_k) + r(s_{k+1}) + r(s_{k+2}) + r(s_{k+3}) + ...\right) = V(s)$

 Monte Carlo: Update V(s) with Return R along saved state transition history

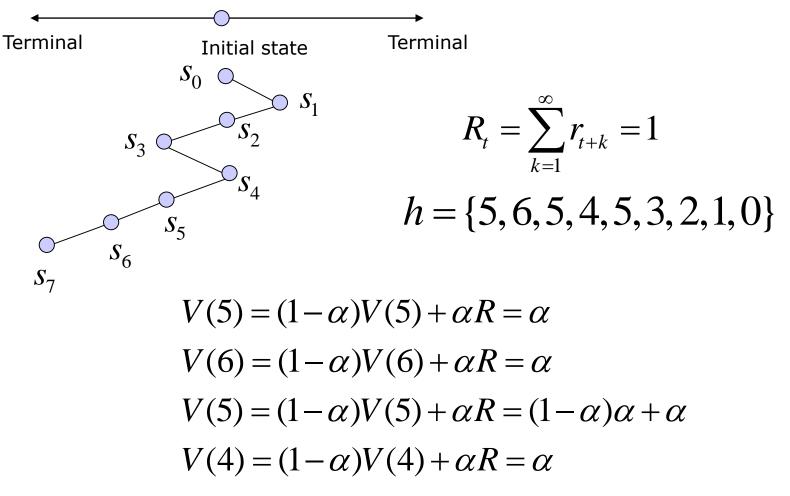
- MC does not use discounted return, but uses Return.

$$h = \{x_5, x_6, x_5, x_4, \dots, x_{\text{terminal}}\}$$
 if $s_t = x_i$

 $V(s') = (1 - \alpha)V(s) + \alpha R_t$ along all history,h

19

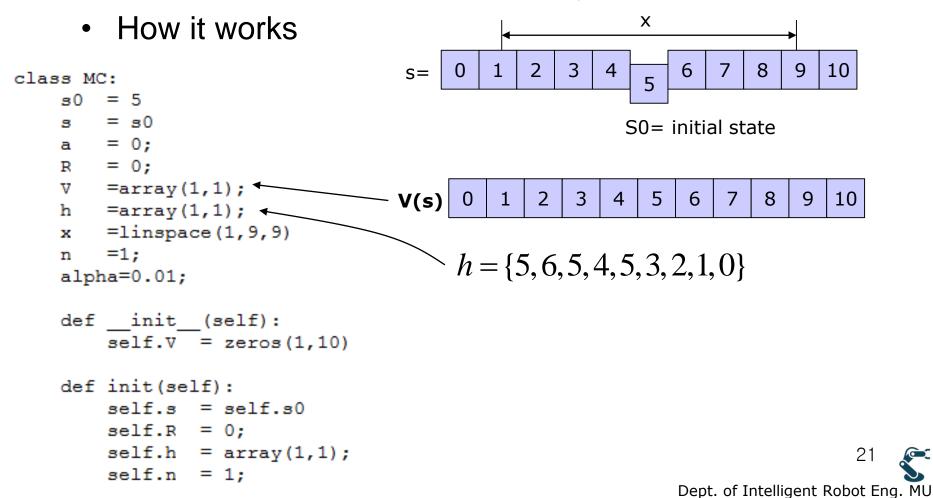
Example of MC Method



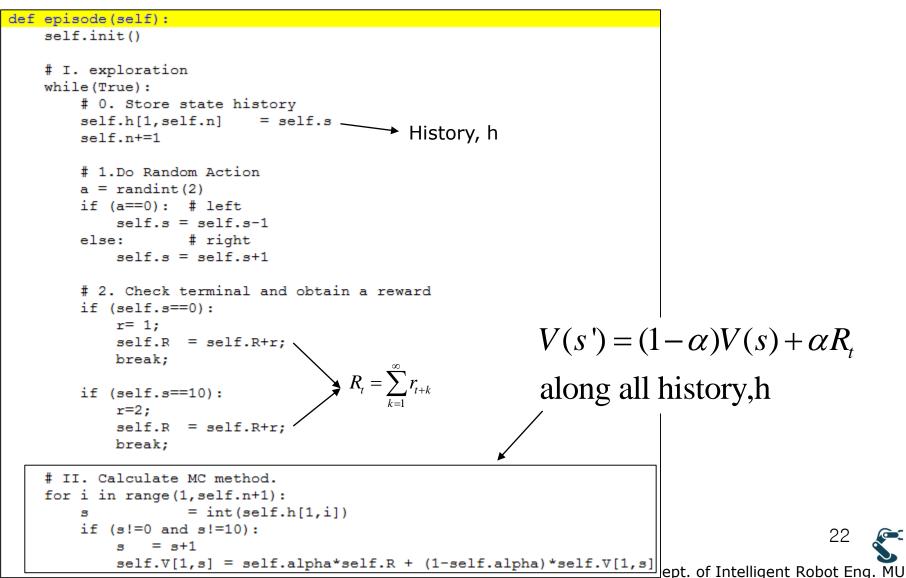
. . .

Example of MC Method, I10mc1. py

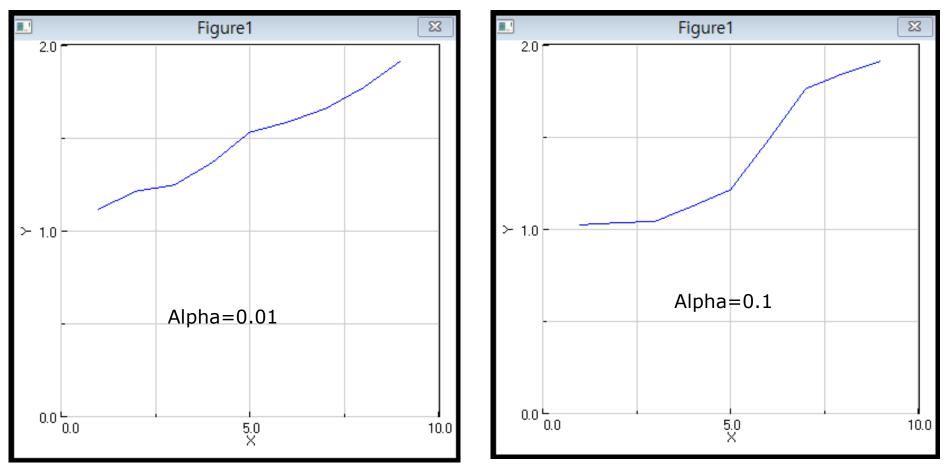
• +1 reward at left, +2 reward at right, otherwise r=0



Example of Episode

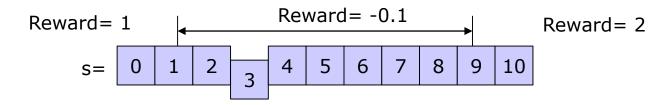


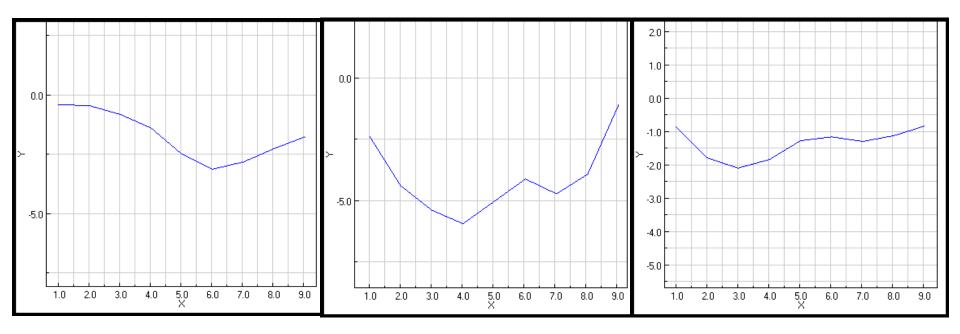
Example results with 1000 Episodes



• V(s) says that Right Direction is better

Example of More Complex Cases, I10mc2

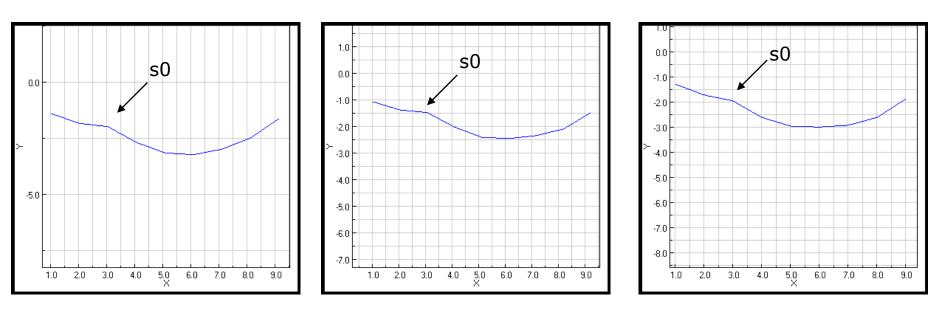




5000 episodes with alpha=0.01

From these results, it is not easy to say which one is better

5000 Episodes with low alpha value(0.001)



- When number of episodes increases, low alpha value contributes for convergences, but it is not so tough.
- The results says that RL gives us determination in the more detailed ways

Summary of Monte-Carlo Method

- MC directly uses Return for update state value.
 - It is very Intuitive method.
 - MC is often used for verifying system characteristics.
 - Many casino games are analyzed by MC.. ^^
- MC does not use Discounted Return,
 - No gamma
- Shortcomings:
 - MC stores all history of state transitions
 - If state transition becomes longer, it becomes a handicap.

3 Discounted Return

Discounted Return

- Discounted return is using the weighted reward.
- Far future rewards are strongly reduced.
- Near future rewards are slightly reduced.
- eg. $S3 \rightarrow S2 \rightarrow S3 \rightarrow S2 \rightarrow S3 \rightarrow S2 \rightarrow ...$ $S3 \rightarrow S2 \rightarrow S1 \rightarrow S0$
 - Far future rewards are meaningless.
 - The result of long journey becomes neglected....
 - Gamma Reduction Ratio is used.

Definition of Discounted Return

Discounted Return

$$R_{t} = \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} = \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \qquad (0 < \gamma < 1)$$

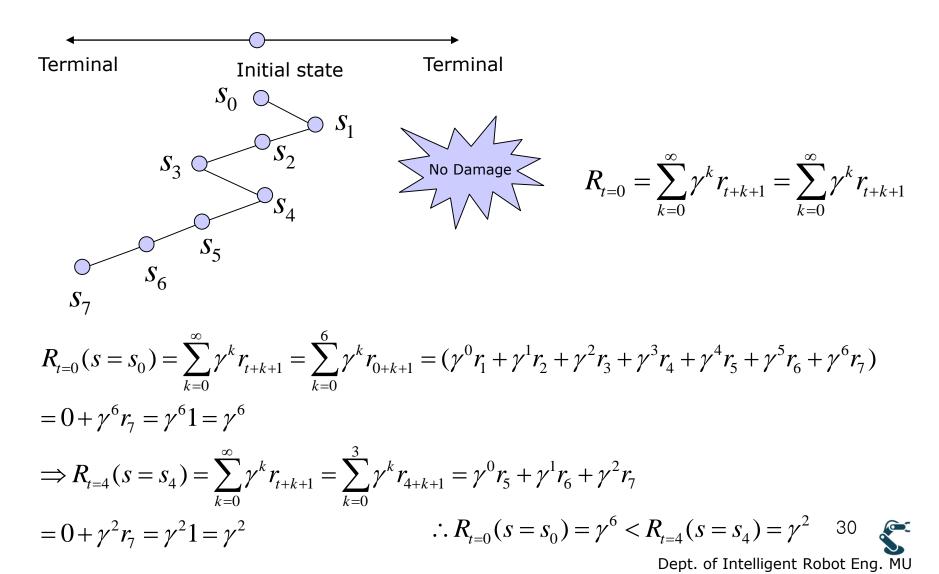
- Why Discounted Return is effective without -0.1 rewards
 - Best case, s= [3, 2, 1, 0] reward +1 at s=0

$$R_{t=0} \ (or \ \mathbf{R}_{s=s_0}) = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} = \gamma^0 \mathbf{0} + \gamma^1 \mathbf{0} + \gamma^2 \mathbf{1} = \gamma^2$$

- Not an optimal case, s=[3,2,3,2,1,0] reward + at s=0

$$R_{t=0} (or \ R_{s=s_0}) = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} = \gamma^0 0 + \gamma^1 0 + \gamma^2 0 + \gamma^3 0 + \gamma^4 1 = \gamma^4$$

- Which one is a larger Return? $\gamma^2 > \gamma^4$



State Value, V(s) Stochastic version of Discounted Return

- Expected Discounted Return (=State value)
 - Average of all future reward. Remember that there are many paths.

ex) S=[3,2,3,2,1,0], S=[3,2,3,2,3,2,1,0], S=[3,4,3,2,1,0]

– We need to average all possible cases \rightarrow Expectation

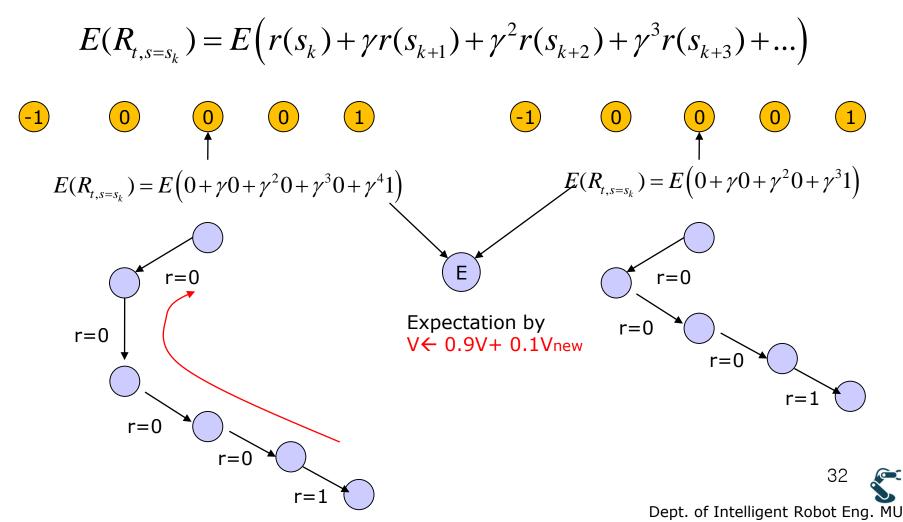
$$E(R_{t,s=s_{k}}) = E\left(\sum_{j=0}^{\infty} \gamma^{j} r(s_{k+j})\right)$$

= $E\left(r(s_{k}) + \gamma r(s_{k+1}) + \gamma^{2} r(s_{k+2}) + \gamma^{3} r(s_{k+3}) + ...\right)$

• Definition of State Value, V(s) $V(s) \triangleq E(R_t)$

Meaning of Discounted Return

• Path information is resolved in State Value.



RL Summary

- Return :
 - sum of all possible rewards
- Discounted Return:
 - sum of all discounted rewards using gamma
- Expected Return: average of (discounted) return
 = State value, V(s)
- Episode : one sequence from initial to terminal state
- State value estimation with Two Different methods
 - 1. Monte-Carlo Method
 - 2. Temporal Difference Method

35

Dept. of Intelligent Robot Eng. MU

Temporal Difference in RL

• Back to State Value Definition

$$E(R_{t,s=s_k}) = E\left(r(s_k) + \gamma r(s_{k+1}) + \gamma^2 r(s_{k+2}) + \gamma^3 r(s_{k+3}) + \dots\right)$$

• State value

 $V(s) \triangleq E(R_t)$

• Without History information \rightarrow Temporal Difference $V(s_k) = E\left(r(s_k) + \gamma r(s_{k+1}) + \gamma^2 r(s_{k+2}) + \gamma^3 r(s_{k+3}) + ...\right)$ $= E(r(s_k)) + \gamma E\left\{r(s_{k+1}) + \gamma^1 r(s_{k+2}) + \gamma^2 r(s_{k+3}) + ...\right\}$ $= r + \gamma V(s_{k+1})$

Temporal Difference: The Crucial Idea in RL

- Observe the Current State, s
- State value: V(s)
- Random Movement by Action: a

$$s \xrightarrow{a} s'$$

- Sense-and-action
- Update State Value, V

$$V(s) = r(s) + \gamma V(s')$$

• Think expectation by alpha (0.01 in general)

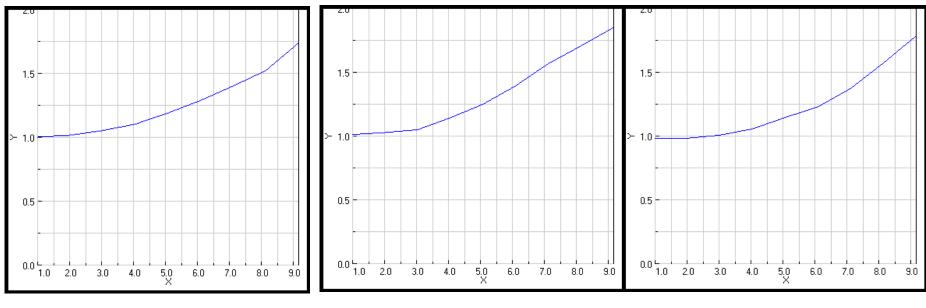
:
$$V(s) = (1 - \alpha)V(s) + \alpha (r(s) + \gamma V(s'))$$
 36
Dept. of Intelligent Robot Eng. MU

Example of I10td1.py

```
def episode(self):
    self.init()
    # I. exploration
    while (True) :
        # 1.Do Random Action
        a = randint(2)
        so= self.s
        if (a==0): # left
            self.s = self.s-1
                    # right
        else:
            self.s = self.s+1
        # 2. Check terminal and obtain a reward
        s = self.s
            = 0
        r
        if (s==0):
            r = 1;
        if (s==10):
            r=2;
                                       V(s) = \alpha (r(s) + \gamma V(s')) + (1 - \alpha)V(s)
        # 3.Update TD
        3
            =s+1
        so =so+1
                        = self.alpha*(r+self.g*self.V[1,s]) + (1-self.alpha)*self.V[1,so]
        self.V[1,so]
        if (s==1 or s==11):
            break;
    clear(1)
    plot(self.x,self.V[1,2:10])
```

Dept. of Intelligent Robot Eng. MU

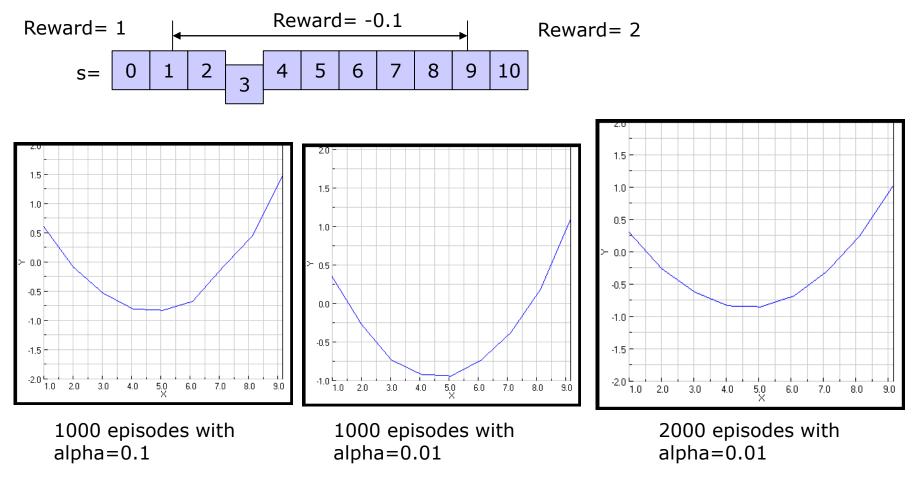
Result of I10td1



1000 episodes with alpha=0.1 2000 episodes with alpha=0.1 2000 episodes with alpha=0.1 alpha=0.01

- MC shows nearly STRAIGHT Line.
- TD shows Curved results, Why?
 - Think Gamma

Example of More Complex Cases, I10td2



• TD shows better performance than MC

5 HW. MC and TD

Ex-1) Baskin Robbins Game

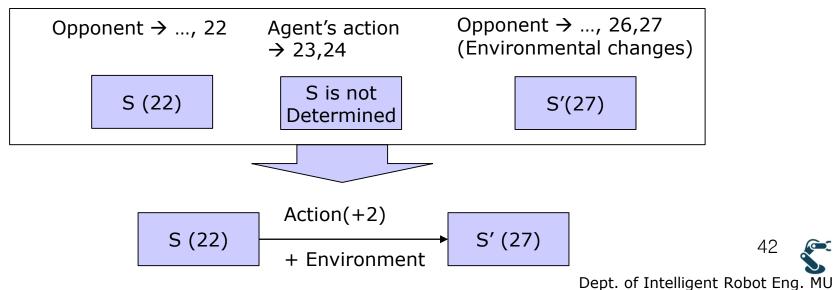
- Initial state, S=0
- Terminal state, S=31
- RL Agent says 1,2, or 3.
- Then we says 1,2, or 3.
- Finally, RL wins if you says the number over 31.
- Reward
 - If RL loses, RL obtains -1
 - If RL wins, RL obtains +1.
- How it works?...

Baskin Robbins 31 Game

• Example

- Agent 1,2 678, ,..., ,23,24, ,28,29,30
- Opponent 345, 9,10,11... 22 26,**27** ,31
- Opponent speaks 31 and loses a game.

RL designs



Hint for Every Problems.

- In Baskin Robbins game, the next state is NOT determined Because your turn is added.
 - RL moves from 0 to 3, then your turn moves from 3 to 4~6.
 - RL feels that action 1, 2, or 3 can move from 2 to 6.
 - Thus, RL works on stochastic way.
- Like what you did in Baskin Robbins game, RL results says that RL obtains the best reward at 27.

Dept. of Intelligent Robot Eng. MU

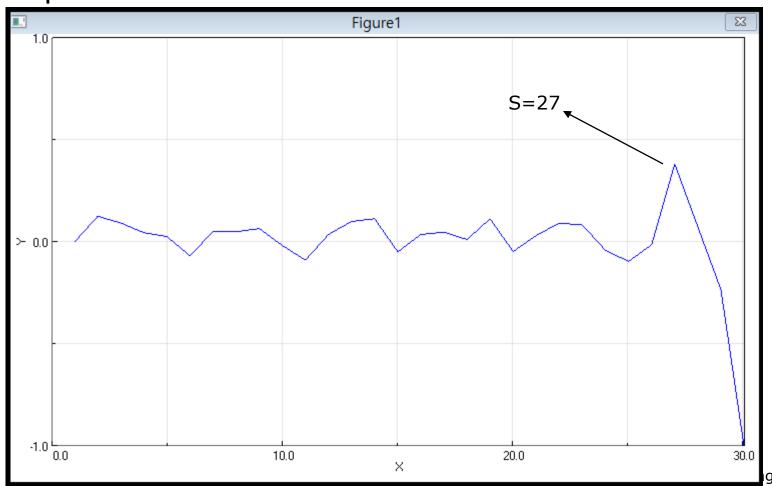
How to Build Baskin Robbins Game? MC example

```
# I. Exploration until an agent reaches at terminals(s=31)
                                                                                      while (True):
                                                                                                                       # 1. save state,s at history,h
                                                                                                                       h = array(h,s)
                                                                                                                                    2. Do random action
RL's turn

\begin{cases}
\# 2. \text{ Do random action} \\
a = randint(3)+1 \\
s = s+a; \\
\# 3. \text{ Check if state, s in on terminals and obtain a reward} \\
r = 0 \\
\text{if } (s>=31): \\
r=-1 \longleftarrow \text{RL loses a game.} \\
R+=r \\
                                                                                                                                               break;
                                                                       # 4. Environment(Opponent player) does action
  Your
  turn
                                                                                                                                                     break;
```

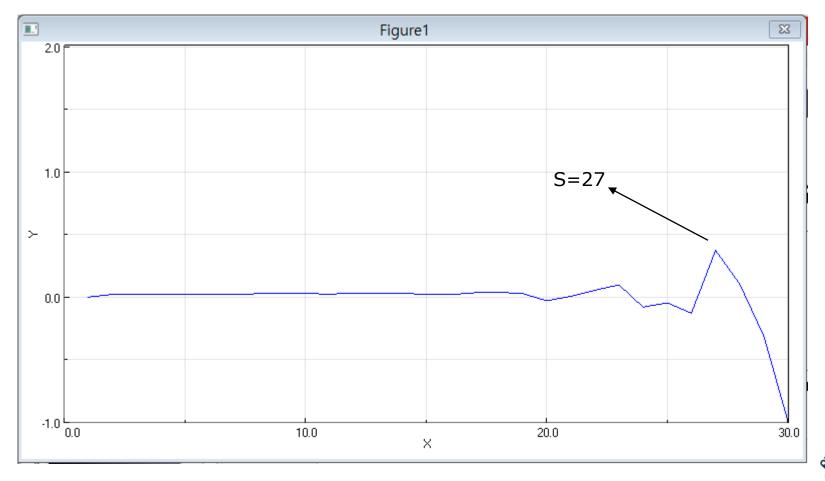
Prob.1. Complete "YOUR" Baskin Robbins Game with MC

• Example of MC result



Prob.2. Complete "Your" Baskin Robbins Game with TD

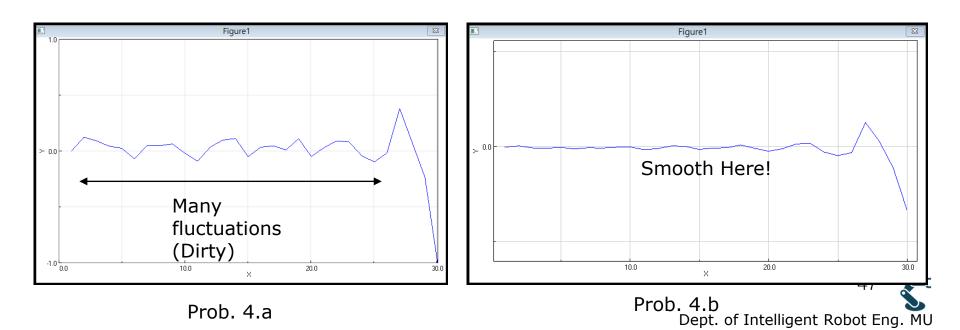
• Example of TD result



Dept. of Intelligent Robot Eng. MU

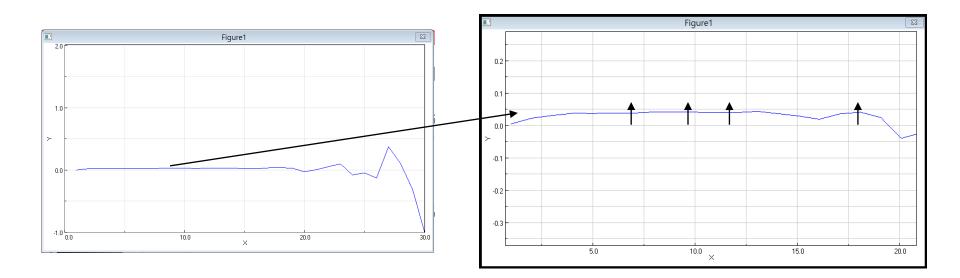
Discussion

- Prob. 3. Explain Why 27 is so important?
- Prob. 4.a. Why MC has so many fluctuations?
- Prob. 4.b. How can we REDUCE many fluctuations like below result? <u>Show your Result</u>



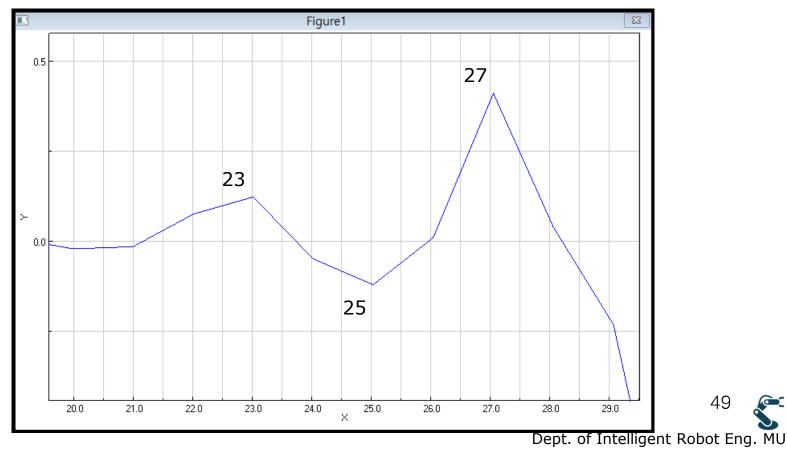
Prob.5. Discussion about TD Results

• Prob. 5.a. From TD Results, V(s) is slightly positive from s=0 to s=20. What is the meaning of it?



Prob. 5.b.

- Prob. 5.b. After 2000, 4000, and 6000 episodes, TD shows this tendency.
 - 23 is better than 25, and 27 is better than 23.
 - What is the meaning of it?



Ex-2) Q-Learning : I9q1.py

- Q-learning has two modes.
- 1. Exploration: random searching for update Q value $Q(s,a) = (1-\alpha)Q(s,a) + \alpha \left[r(s,a) + \gamma \max_{a'} Q(s',a') \right]$
- 2. Exploitation: Following Maximum Q value
 - An agent follows Maximum Q value
 - Argmax(Q(s,a) = $a^* \rightarrow Best policy(action)$

