Robot Learning: Reinforcement Learning

Lecture 9

양정연 2020/12/10

Process Learning (Sequence Learning)

1. What learning methods try to learn?

- Think about Neural Network and Linear Regression
- Is it True? Linear Regression is Equal to Basic NN Nonlinear Kernels works for creating Hyperplane.

Data (x, y) are given

Goal is to find the proper function, NN

$$y = f(x) = w_2 \Phi(w_1 x)$$

Learning the function!

Data (x, y) are given

Goal is to find the proper function, y=ax+b

$$y = f(x) = wx$$

Learning the function!

Definition of Hyperplane

- Hyperplane is a subspace that
 - reduces the dimensionality of an original space.

2 Dim. Space is projected on a New Space with y=wx.

2. What learning method try to learn?

- Think about Neural Network and Control
- Control is the Modeling based Method.

3. If we use NN in the control, What happens?

- Think Control Diagram
- \rightarrow Input and output are different in every time \rightarrow Failed

4. It is different with Function Estimation. It tries to learn Dynamic System.

Think Control Diagram

Learning the function!

• \rightarrow Input and output are different in every time \rightarrow Failed

How do Learning this case?

• Something is different with Neural Network...

Learning Goal is "to learn a Process"

- Process is a series of sequential events.
- Design issues
 - We can make a process like a instant data

- − Each dot in a space is a process \rightarrow Learning a process
- Every dots in a space are a non process but an image.
- How to learn a process?
 - There are two types of popular methods.
 - 1. Recurrent Neural Network, RNN
 - 2. Reinforcement Learning, RL
 - (3. Classifier \rightarrow Hidden Markov Model, HMM)

Types of Learning methods

Learning Function

Х

Sample

Learning Dynamics (or Sequences)

Learning Module

Y

How to learn Dynamics or Sequences

- 1. Recurrent Neural Network (RNN)
- 2. Recursive Neural Network (Becoming Perished)
- 3. Reinforcement Learning
 - However, it has some different features(Stochastic)

Remind Tic-Tac-Toe

- Question 1: What is a state vector in Tic-Tac-Toe? $x_k = [X, \phi, X, X, O, \phi, O, \phi, \phi]^T$ Action $x_k = [X, O, X, X, O, \phi, O, \phi, \phi]^T$ $\downarrow \rightarrow x_{k+1} = [X, O, X, X, O, \phi, O, X, \phi]^T$
 - Question 2: What is an input and an output?
 - There are No Input and Output
 - There are only States and Actions

Input / Output is Similar to Control

$$m\ddot{x} + c\dot{x} + kx = 0$$
$$\dot{X} = f(X, t)$$

$$m\ddot{x} + c\dot{x} + kx = u(t)$$
$$\dot{X} = f(X, u, t)$$

What we Minimize?

Or What we Maximize?

Local and Global Goal

- Minimize error is the strong issue in Learning Method
 - In other words, Optimization is the Learning.
- Local Goal
 - A dog tries to follow a bone \rightarrow But failed
- Global Goal (Nearly Global Optimization)
 - A dog tries to avoid obstacles \rightarrow locally weak but globally success

Example

Try to follow the local goal

It is Not sure, but finally get the goal

Absolutely, success!

- Learning is achieved by several trials.
- 1st turn : follow the local goal, but get the goal eventually.
- 2nd turn: unsure but a dog remembers the solution
- 3rd turn: Fully being learned.

Issue. 1. There are so Many, Many Paths.

- Step 1. Each path must be scored
- Step 2. I might find the best one.
- Step 3. But, I did not pass the best one \rightarrow Try it again.
- Step 4. Finally Find the Best One.

Issue. 2. Stochastic Problem

- An agent follows the same path.
- But Scoring is not Accurate.
 - 1st turn: the score was 1.
 - 2nd turn: the score was 1.2
 - 3rd turn: the score was 0.9

Issue. 3. Expectation of ALL Cases

- Expectation is the terminology in Probability
- Every events are considered as Probabilistic cases.

$$E\{R\} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} R_i \left(= \sum_{i=1}^{\infty} R_i p(R_i), p \text{ is PDF, Not Probability} \right)$$

Expectation in Probability

• Expectation is the value that is weighted by probability

 $E(x) = \int_{-\infty}^{\infty} xp(x)dx, \ p(x) \text{ is the Probabilistic Density Function}$

 $E(x) = \sum_{i} x_{i} p(x_{i}), p(x)$ is the Probabilistic Mass Function

• Expectation of rolling a dice.

Prob.
$$P(x = x_i) = p(x_i)$$

 $E\{x\} = \sum_{i=1}^{6} x_i p(x_i) = \sum_{i=1}^{6} x_i P(x = x_i) = \sum_{i=1}^{6} x_i \frac{1}{6} = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5$

Dept. of Intelligent Robot Eng. MU

RL uses Return Value(Scores) in Future..

Scoring on every transition

22

3 Stochastic Environment

Everything is Stochastically Determined : Stochastic(Probabilistic) World

• Think the example

- Initial(Start) position: an agent starts its exploration.
- Terminal position: an agent ends its exploration.
- Which way (Left or Right) is better ?
 - You answer the right turn.
 - Why? → How can you teach it to an agent

Our Agent has No Information

• An agent has two buttons

Agent does NOT know which button is left or right

- When an agent finish its exploration, it gets a Reward.
- "An agent is blind"

Do 1000 Explorations

```
• Run l9test1.py
```

```
def test():
    sumLeft = 0
    sumRight= 0
    for i in range(0,1000):
        r=explore();
        if (r==1):
            sumLeft = sumLeft+1
        if (r==2):
            sumRight= sumRight+1
```

```
print(sumLeft,sumRight)
```

```
def explore():
    global s
    # Restart exploration.
    init();
   while (True):
        # Determine action randomly
        a=randint(2)
        if (a==0): # left
            s=s-1;
        else:
            s=s+1; # right
        #check if s is on terminal
        if (s==0):
            r = 1;
            break;
        if (s==10):
            r=2;
            break;
    #print(s,r)
    return r;
```

Result is ..

Result	Sum of Left goals	Sum of Right goals
1	506	494
2	485	515
3	518	482
4	498	502
5	503	497
6	517	483
7	485	515

- It is just Left or Right example.
- If we do many iterations, left becomes equal to right.
 - Ex) left \rightarrow 500, right \rightarrow 500, Probability is 0.5

What we Learn from this STUPID Example

- 1. if we push Red or Green button "Randomly",
 - We can go left or right terminal
 - Thus, probability of Left and Right is

 $p(left) \cong 0.5 \quad p(right) \cong 0.5$

2. However, we know that "Right" will get better reward
 – How can we express this?

At an initial state, we expect that

$$r_{left} p(left) + r_{right} p(right)$$
$$= 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{2} = 1.5$$

Sum of Rewards is Good for Learning

	Left Terminal	Right Terminal
Number of cases	503	497
Sum of Reward	503	994
average	503/503=1.0	994/497=2.0

Finally, I can say that Average of Reward at the RIGHT is better!

• If it is a tough road, an agent receives -0.1 reward.

- There are some Monsters as in video games.

- In each Movement, reward is -0.1...
 - Which way is better?

See l9test3.py

```
def explore():
   global s
   # Restart exploration.
   init();
   case =0;
   while (True) :
      # Determine action randomly
      a=randint(2)
      if (a==0): # left
          s=s-1;
       else:
          s=s+1; # right
      #check if s is on terminal
      if (s==0):
          r = r+1;
          case =0;
                        Final reward at
          break;
                        each terminal
      if (s==10):
          r= r+ 2;
          case =1:
          break;
```

```
#print(s,r)
return case,r;
```

• How it works?

```
a.test()
723 277
-0.8167358229598886 -0.8068592057761725
a.test()
711 289
-0.6769338959212378 -1.1539792387543224
```

	Left Terminal	Right Terminal
1 st test	723 Avg= -0.817	277 Avg=-0.807
2 nd test	711 Avg= -0.677	289 Avg=-1.154

Which one is better?

I9test3.py Test $1000 \rightarrow 10000$ times.

10000 times

1000 times

a.test() 723 277 -0.8167358229598886 -0.8068592057761725 a.test() 711 289 -0.6769338959212378 -1.1539792387543224

- Which one is better?
- With 10000 tests, "Left" is better.

```
a.test()
6984 3016
-0.6861397479954281 -1.0130636604774528
a.test()
7020 2980
-0.6702564102564202 -1.0504026845637588
a.test()
6969 3031
-0.7029559477687005 - 1.0480699439128982
a.test()
7013 2987
-0.6885355767859803 -1.0675929025778355
a.test()
7020 2980
-0.6943589743589857 -1.0181879194630854
a.test()
7015 2985
-0.7208410548824017 -0.9618425460636508
a.test()
6956 3044
-0.7127659574468206 -1.046911957950067
a.test()
6938 3062
-0.7210435283943618 -1.0207707380796869
a.test()
7008 2992
-0.7084189497716983 -0.9660427807486635
```

See the Result, Carefully

a.test() 6984 3016 -0.6861397479954281 -1.0130636604774528 a.test() 7020 2980 -0.6702564102564202 -1.0504026845637588 a.test() 6969 3031 -0.7029559477687005 - 1.0480699439128982a.test() 7013 2987 -0.6885355767859803 -1.0675929025778355 a.test() 7020 2980 -0.6943589743589857 -1.0181879194630854 a.test() 7015 2985 -0.7208410548824017 -0.9618425460636508 a.test() 6956 3044 -0.7127659574468206 -1.046911957950067 a.test() 6938 3062 -0.7210435283943618 -1.0207707380796869 a.test() 7008 2992 -0.7084189497716983 -0.9660427807486635

- Optimal might be
 - Left Distance is 3 and Left reward is 1.

→ 1 -3*0.1 = 0.7.

- Right Distance is 7 and Right reward is 2. Then, 2- 7*0.1 = 1.3??
- Why Avg. left and right is so different?

It is a stochastic world.

An Random agent CANNOT reach at Right Terminal within 7 steps. (Probably Not)

- Sum is Good?
 - Case 1) s=[3, 2, 1, 0] Sum of rewards= 1-3*0.1=0.7 (Best)
 - Case 2) s=[3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1,0] Sum = 1-19*0.1 = -0.9
- Average is Good?
 - Case 1) 3 turns \rightarrow 0.7/3 = 0.233
 - Case 2) 19 turns → -0.9/19= -0.047

Dept. of Intelligent Robot Eng. MU

Summary

- Average of all rewards
 - Meaningless [3,2,3,2,3,2....] only reduces average rewards.
 - Increasing average of all rewards is to find the optimal path
- Why Not Sum?
 - Summation is just a Cost function in deterministic ways

- Why Average?
 - Average is an alternative expression of Expectation
 - Our problem is in a stochastic world → Use Probabilistic method

$$\overline{R} = \frac{1}{N} \sum_{k} r_{k} \triangleq E\{R\} \quad \therefore optimal \ path: \max(E\{R\})$$
35